Author: Manikonda, S.L.
Paper Title Page
MOB03 Design and Status of the Super Separator Spectrometer for the GANIL SPIRAL2 Project 23
  • J.A. Nolen, S.L. Manikonda
    ANL, Argonne, USA
  • M. Authier, A. Drouart, J. Payet
    CEA/DSM/IRFU, France
  • O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
  • J. Laune
    IPN, Orsay, France
  • F. Lutton, H. Savajols, M. Souli, M.-H. Stodel
    GANIL, Caen, France
  Funding: This work is partially supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
The Super Separator Spectrometer (S3) is a device designed for experiments with the very high intensity stable heavy ion beams of the superconducting linear accelerator of the SPIRAL2 Project at GANIL. S3 is designed to combine high acceptance, a high degree of primary beam rejection, and high mass resolving power to enable new opportunities in several physics domains, e.g. super-heavy and very-heavy nuclei, spectroscopy at and beyond the drip-line, isomers and ground state properties, multi-nucleon transfer and deep-inelastic reactions. The spectrometer comprises 8 large aperture multipole triplets (7 superconducting and 1 open-sided room temperature), 3 magnetic dipoles, and 1 electrostatic dipole arranged as a momentum achromat followed by a mass separator. A summary of the beam-optical simulations and the status of the main spectrometer components will be presented with special emphasis on the design of the superconducting multipole triplets.
slides icon Slides MOB03 [2.745 MB]  
MOB04 Argonne In-flight Radioactive Ion Separator 24
  • S.L. Manikonda, M. Alcorta, B. Back, J.A. Nolen, R.C. Pardo, E. Rehm, G. Savard, D. Seweryniak
    ANL, Argonne, USA
  • B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357
The Argonne In-flight Radioactive Ion Separator (AIRIS) is a new large recoil separator that is being designed as a part of proposed future upgrade of the ATLAS facility to provide at least 10 times more collection efficiency than the existing system. In combination with other proposed upgrades it will provide a 2 orders of magnitude gain in the intensity for the in-flight produced secondary beams compared to the existing facility. The resulting unprecedented intensities for the recoil beam open new opportunities in several physics domains, e.g. gamma ray spectroscopy after secondary reactions, reactions for rp‐, νp‐, αp‐ processes and CNO cycle. The proposed design for the AIRIS device is based on four multipole magnets and four dipole magnets arranged in a so called broadband spectrometer configuration. This arrangement will be followed by two RF cavities to provide further selection based on velocity differences between the primary beam tail and the recoiling RIB. The advantages of such a design and key parameters will be discussed. We will demonstrate the performance of the device for few representative reaction cases that can be studied using AIRIS.
slides icon Slides MOB04 [1.626 MB]