Author: Kester, O.K.
Paper Title Page
THB04 Development of the Intensity and Quality of the Heavy Ion Beams at GSI 211
  • L.A. Dahl, W.A. Barth, M.C. Bellachioma, L. Groening, O.K. Kester, M.M. Kirk, D. Ondreka, N. Pyka, P.J. Spiller, J. Stadlmann, H. Vormann, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • L.H.J. Bozyk, Y. El-Hayek
    FIAS, Frankfurt am Main, Germany
  • C. Xiao
    IAP, Frankfurt am Main, Germany
  For injection into the future FAIR SIS100 synchrotron the GSI linear accelerator UNILAC and synchrotron SIS18 have to provide 1.5·1011 p/spill for the reference U28+ beam. The MeVVa ion source extracts 37 emA of U4+ beam. For improved transmission the RFQ vanes were revised and exchanged. A new ion source terminal with straightforward beam injection into the RFQ is calculated and partly realized for loss free beam transport to the RFQ. To improve the quality of the space charge dominated beam in the DFFD periodic focussing Alvarez section a transverse 4th order resonance was investigated by simulations and experimentally. The multi turn beam injection into the SIS18 requires emittances below βγεx/βγεy=0.8/2.5 [μm]. This suggests introducing a new concept for emittance transfer by solenoidal stripping. A set-up for experimental proof of principle will be installed at the foil stripper. The SIS18 has been equipped with NEG-coated chambers for all magnets and the injection septum. Newly installed ion catchers improve especially the dynamic vacuum pressure. The effect on progress in beam quality development and intensity will be reported.  
slides icon Slides THB04 [9.809 MB]  
THB05 The HITRAP Decelerator and Beam Instrumentation 217
  • F. Herfurth, Z. Andjelkovic, W.A. Barth, K. Brantjes, G. Clemente, L.A. Dahl, S. Fedotova, P. Gerhard, M. Kaiser, O.K. Kester, H.J. Kluge, C. Kozhuharov, M.T. Maier, D. Neidherr, W. Quint, A. Reiter, T. Stöhlker, G. Vorobjev, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
  A linear decelerator is being commissioned for heavy, highly-charged ions (HCI) at GSI in Darmstadt/Germany. HCI with only one or few electrons are interesting systems for many different experiments as for instance precision tests of the theory of quantum electrodynamics (QED). In order to transform heavy HCI produced at 400 MeV/u to stored and cooled HCI at low energy the linear decelerator facility HITRAP has been setup behind the experimental storage ring (ESR). The ions are decelerated in the ESR from 400 to 4 MeV/u, cooled and extracted. The ions are then matched to an IH-structure using a double drift buncher, decelerated from 4 to 0.5 MeV/u in the IH, and then down to 6 keV/u in a 4-rod RFQ. To detect and analyze the weak and sparse ion bunches a new type of energy analyzing detector has been developed along with improvements to other “standard” beam instrumentation. One million highly charged ions have been decelerated with the IH from 400 MeV/u to about 0.5 MeV/u per cycle. The RFQ has shown in off-line tests to decelerate ions, however, the measured acceptance does not fit the ion beam from the IH. This requires a refined design, which is underway.  
slides icon Slides THB05 [2.925 MB]