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Core-excited smoothly terminating band in *4Xe
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High-spin states have been studied in neutron-deficigpte, populated through th&éNi(>®Ni,2p) fusion-
evaporation reaction at 230 MeV. The Gammaspheray spectrometer has been used in conjunction with the
Microball charged-particle detector in order to select evaporation residues of interest. The yrast band has been
greatly extended to a tentative spin offi5and shows features consistent with smooth band termination. This
band represents the first evidence for a core-exdigedparticle, two-holg proton configuration abov&
=53.
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The level structure of neutron-deficieht™Xe has recently minating band in a xenon isotop&# 54), or indeed in nu-
been extended td =274 following a low-energy %8Ni  clei with Z>53 in this mass region. The(ge,) 2 configu-
+58Ni reaction Epean=210 MeV) with a backed target ration plays an important role both in mass 1Ltil now
[1]. New results have now been obtained with the Gammas¢=>53) terminating bands and in mass 130 superdeformed

pherey-ray spectrometer employing this reaction at a highe2nds =58, 59 [4]. The present results far=54 advance

beam energyE,...=230 MeV) and using a thin target to the bridge between these two structural features in the two
,~peam .mass regions.

study very high-spin states. As a result, the yrast band in High-spin states in'1%Ke were populated using the

"Xe has been greatly extended to-50% and the band S8Ni(®®Ni,2py) fusion-evaporation reaction, performed at

shows high-spin characteristics of a smoothly terminatinghe Argonne National Laboratory, using a 230 M&WNi

structure [2,3]. Comparisons with cranked Nilsson- peam supplied by the ATLAS superconducting linear accel-

Strutinsky calculations indicate that at high spin the band isrator. The beam was incident on two thin self-supporting

built on a core-excited proton six-particle, two-h¢telative  nickel targets, each of nominal thickness 5p@/cn?. The

to Z=50) deformed configuration involving twagg, pro-  Gammasphere-ray spectrometdi5], containing 101 HPGe

ton holes that originate from below the spherigat 50 shell  detectors, was used in conjunction with the Microljéllin

gap. This represents the first evidence for a core-excited teorder to provide exit channel selectivity through determina-
tion of the number of evaporated charged particles. In addi-
tion, the recoiling evaporation residues were passed through

*Electronic address: esp@ns.ph.liv.ac.uk the Argonne Fragment Mass AnalyzgtMA) [7] and were
"Present address: Department of Chemistry, Washington Univerdispersed according to their mass-to-chargeéqj ratio. In
sity, St. Louis, MO 63130. the present high-spin analysis &¥*Xe, however, this FMA

*Present address: Department of Nuclear Physics, Researéhformation was not required.
School of Physical Sciences and Engineering, Australian National The Microball charged-particle detector, consisting of 95
University, Canberra ACT 0200, Australia. closely packed C¢Tl) scintillators covering 97% of #, was
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FIG. 1. Singlesy-ray spectra showing enhancement of transi- (367 (6",
tions in %Xe (2p channel by a combination of charged-particle, 1812)
k-H, and TEP gatindgsee text for details (34+) (344
used to determine the number of evaporated protonsaeand 1525 (32+ 1450
particles associated with an event. Pulse-shape- (329 ) o
discrimination and zero-crossover-timing techniquied a0 B9 6oy 30*
were used to separate light charged particles, including pro- (300 -1 1278
tons anda particles. ag+ 1187 (28 “#14) 28
In order to improve the channel selection further, the L1076 e 1148 S+ 1204
bismuth-germanatéBGO) anti-Compton shield elements of 26" g T =
the Gammasphere spectrometer were used ggay fold 1032 o A5 139
and sum-energy selection device. By removing the Hevimet e 1062
collimators, the front of the BGO suppression shields were 1 3
exposed, allowingy rays to strike the shield elements di- 20 O
rectly. The number of BGO elements firing and their total 18+ 93

J —w 6514 MeV
energy were recorded for each event providing fiddand

sum-energy(H) information. By setting off-line software FIG. 2. High-spin positive-parity band structures'ifXe with
gates on a two-dimensionktH plot, a significant improve- transition energies labeled in keV. Spin assignments up-t80#:
ment in the quality of the channel selection was achievedfollow from an angular-correlation analysis.
high k andH values enhanced the two-particté’Xe chan-
nel. represents the whole data set. Demanding the detection of
Another channel-selection technique consisted in the extwo protons and high fold/sum energy removesd2g con-
amination of they-ray sum-energyH) recorded by gamma- tribution to these peaks in Fig(l). However, considerable
sphere in relation to the total energy of the charged particles™™ (3p) lines are still evident in this spectrum due to the
(Ey) deposited into the Microball. Off-line gates were fact that this channel is strong at this beam energy and that
placed on a two-dimension&l-E,, plot (the “total energy there is a~30% probability for a proton not being detected
plane” (TEP) of Ref.[8]) appropriate for''“Xe. in the Microball. The final requirement is to place a cut on
Events corresponding topPa evaporation were selected the two-dimensionaH-Ey, TEP plot, essentially selecting
from the original data set of approximatel@0® events. In  events with high y-ray sum energy, but low recorded
addition, two-dimensional cuts were madelehl andH-E,, charged-particléproton energy. This final cut severely lim-
plots to enhance thé'“Xe channel. The effect of this selec- its the statistics, but greatly improves thp Bnes relative to
tion is illustrated in Fig. 1. The two strongest transitions inthe contaminant 8 lines, as can be seen in Fig(cL The
114%e (2p channel of energies 450 keV and 619 keV are remaining 1.X 10°y-ray events, of mean fold 4.6, are, how-
also strong transitions if'°Te (a2p) [9], which was popu-  ever, sufficient for a high-spin triplesyf) analysis of'*Xe.
lated with more intensity thart**Xe at this beam energy; ~ The selected events were unfolded into 15’ con-
these transitions are labeled asp‘2 a2p” in Fig. 1(a) that  stituent triple ¢°) coincidences and replayed into a
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FIG. 3. Triples(main and doubleginsed y-ray spectra for the
high-spin yrast band of'*Xe. Transitions are labeled by their en-
ergies in MeV.

FIG. 5. Comparison of the experimental bandopen circles
with the theoretical22,4] configuration(filled circles which termi-
nates at "=56". The data points are normalizedlat 46%.

RADWARE-format cube[10]. Analysis of the cube was con- jth constrained orbital occupancy, have been performed us-
ducted using theeviTer graphical analysis packaddO].  ing the configuration-dependent shell-correction approach
These selected events were also used for an angulaith an unpaired, cranked Nilsson potential, as described in
correlation analysis. The positive-parity yrast band8e  Refs.[2,11,1, and using the Nilsson parameter set of Ref.
has been extended from=24% [1] by 14 transitions up to & [13]. The calculated configurations are labeled using the
tentative spin of 52; the high-spin level scheme is shown in usual[p;p,,n;(n,)] nomenclaturd12), i.e., p; represents
Fig. 2, while spectra obtained from the cube are displayed ifhe number ofrgg, holes,p, the number ofrh, 4, particles,

F|g 3 for the band labeled 3. AnO.ther new band of six .tran'nl the number Oﬁ/hll/Z partic'eS, anchz represents the num-
sitions has been found to feed into the™2fevel and is  per of viigp particles, relative to thez=N=50 doubly

labeled band 1 in Fig. 2. Finally, the previously known bandmagic corepn, is omitted if equal to zero.
2 has been extended by three transitions to"(30 Band 1 is best described by tf22,2] configuration which
In order to assign configurations to the high-spin structerminates into an oblate shapel &t=38". Since band 3 is
tures in *“Xe, the energies of the experimental bands argypserved to such high spin (5, it clearly must correspond
plotted relative to a rigid-rotor reference in Fig. 4 and areto 5 core-excited configuration containing two holes in the
compared to theoretical configurations. The calculationsq, , orbital; the lowest-energy configuration predicted by
theory is the[22,4] one in Fig. 4b), which terminates alt™

4 =56", just 44 higher than experiment. Relative to'8%Sn
(a) expt. 114 L2 S )
Xe core, the terminating oblate state may be explicitly written as
3 the 7 (9o2) ~%(ds972)*(h11/9 %28+ Proton configuration
- Bandz coupled to thev[(ds;g7,)8(h11/) %125+ neutron configura-
% 2 tion. The energy minima in the rigid-rotor plots of both
= Band 3 bands 1 and 3 agree with those predicted fo{@&2] (34")
~ 1 Band 1 and[22,4] (46") configurations, respectively, reinforcing the
=+ (+,0) confidence in the proposed interpretation.
= 0 ‘ The rigid-rotor plot for band 3 is compared with that of
A 2K 210041 [0 the theoretical22,4] configuration in Fig. 5. The experimen-
g tal and theoretical points are normalized &t46#. There is
o1 SR\ W very good agreement for spins-362%. Below | =36#, the
[00,2] RN [22.4] experimental points slowly diverge from the theoretical
0 A . [22,4] configuration that could be caused by a band crossing
[02,2] or an increase in pairing at low spin; pairing is not included
11 (b) theory ~— in the calculations.
The theoretical shape evolution through they defor-

10 20 30 40 50 60 mation plane for severala{,7)=(0,+) configurations in
L(7) 1%xe is given in Fig. 6. It can be seen that tf#2,4] and

FIG. 4. The energies of the positive-parity experimental band423.31)] configurations, mcIudm_g the twargg,, holes, are
in 1%e at high spin(a), and selected theoretical configuratighs ~ "uch more deformed at low spir{~0.30) than the con-
shown relative to a rigid-rotor reference. The large circlegbn ~ figurations containing no holes. This demonstrates the shape-
represent oblate terminating states, while the dashed line follow§rving aspect of holes occupying a strongly upsloping “ex-
the locus of theoretical yrast states{@L,3 configuration forl  truder” orbital and also explains the connection between
~20-30%, a second01,3] configuration forll ~36—40%, a[12,4] mass 110 terminating bands and mass 130 superdeformed
configuration just above =40%, and a[23,31)] configuration (SD) bands withe,~0.35. The latter bands, with a larger
abovel =52%. Note that in the spin range 861 <44#, the calcu-  valence space, can accommodate more spin before termina-
lated[02,4] and[22,4] curves in(b) are degenerate. tion is reached, e.g., the yrast SD band'fiCe is expected
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, with two 7gg), holes in 11%Xe; the configurations with the
0.0162 \ AN holes are predicted to possess~0.30 at spin 26, as op-
) posed tos,~0.20 for the configurations with no holes.

Band 3 in 1*Xe represents the first evidence for a core-
excited smoothly terminating band in this mass region for a
nucleus with more than 53 protons. Previously, such struc-
tures had been systematically observed in nuclei with 49
<Z7=<53[3]. Indeed, in*'3, with one proton less thah**Xe,

a similar [22,4] configuration represents the most strongly
0.0 0.1 0.0 0.3 populated terminating banf21]. Terminating bands have
£,c08(1+30°) been observed in heavier xenon isotopes, but it has not been
possible to definitely prove whether they are built on core-

FIG. 6. Theoretical evolution of the nuclear shape for[dg2] ~ €xcited configurations, involving therge, holes, or not
(diamonds, [02,2] (squarey [22,4] (circles, and [23,31)] (ri-  [22,23. Lifetime me_asure_ments_lﬁlg)(e do, however, favor
angles configurations in**Xe. The data points are separated by l€ss-deformed configurations without theg, holes[24].

£,5in(+30°)

o In summary, the yrast band of**Xe has been signifi-
cantly extended tb~50% and shows the characteristics of a
to terminate at "= 78", 22 higher than band 3 it'%e smoothly terminating structure. Comparison with cranked

Nilsson-Strutinsky calculations indicates that this band is
based on a core-excited proton configuration involving two
mdg;, holes. This represents the first evidence for such a
configuration in the xenon isotopes and starts to bridge the
gap between mass 110 terminating bands and mass 130 su-
V\Perdeformed bands.

Initially, SD nuclei in the mass 130 region were believed
to be driven solely by the occupation off, 5, intruder orbit-
als from the N=6 oscillator shel[14]. This was consistent
with the original observation of a strongly populaté&do of
the reaction channelSD band in'%Ce (N=74) [15,16,
while only recently have SD bands been found at or belo
N=72[17-19. The latter work has however shown that the  This work was supported in part by the U.K. Engineering
presence of holes in thegg,, orbital [20] are just as impor- and Physical Sciences Research Council, U.S. National Sci-
tant in forming SD shapes ifi~58 nuclei and that superde- ence Foundation, and the Department of Energy, Nuclear
formation still persists as the neutron Fermi surface falls welPhysics Division, under Contract No. W-31-109-ENG-
below the N=6 intruder orbitals. Moreover, Fig. 6 clearly 38(ANL). We are indebted to Dr. D. C. Radford for provid-
shows a larger quadrupole deformation for the configurationgng the RADWARE analysis codes.
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