# Particle-core coupling in the transitional proton emitters $^{145,146,147}\mathrm{Tm}$

D. Seweryniak<sup>1,a</sup>, C.N. Davids<sup>1</sup>, A. Robinson<sup>2</sup>, P.J. Woods<sup>2</sup>, B. Blank<sup>3</sup>, M.P. Carpenter<sup>1</sup>, T. Davinson<sup>2</sup>, S.J. Freeman<sup>4</sup>, N. Hammond<sup>1</sup>, N. Hoteling<sup>5</sup>, R.V.F. Janssens<sup>1</sup>, T.L. Khoo<sup>1</sup>, Z. Liu<sup>2</sup>, G. Mukherjee<sup>1</sup>, J. Shergur<sup>5</sup>, S. Sinha<sup>1</sup>, A.A. Sonzogni<sup>6</sup>, W.B. Walters<sup>5</sup>, and A. Woehr<sup>5,2</sup>

<sup>1</sup> Argonne National Laboratory, Argonne, IL 60439, USA

<sup>2</sup> University of Edinburgh, Edinburgh, UK

<sup>3</sup> CEN Bordeaux-Gradignan, IN2P3-CNRS, Gradignan Cedex, France

<sup>4</sup> University of Manchester, Manchester, UK

<sup>5</sup> University of Maryland, College Park, MD 20742, USA

<sup>6</sup> NNDC Brookhaven National Laboratory, Upton, NY 11937, USA

Received: 20 December 2004 / Revised version: 3 February 2005 / Published online: 7 July 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

**Abstract.** Excited states in 3 transitional proton emitters <sup>145,146,147</sup>Tm were studied using the Gammasphere Ge array coupled with the Argonne Fragment Mass Analyzer. The <sup>147</sup>Tm level scheme was extended and the unfavored signature partner of the decoupled proton  $h_{11/2}$  band was found. A rotational band feeding the high-spin isomer in <sup>146</sup>Tm was observed with properties similar to the <sup>147</sup>Tm ground-state band. A regular sequence of  $\gamma$  rays correlated with the ground-state <sup>145</sup>Tm proton decay has properties of the  $h_{11/2}$  band as well. In addition, coincidences between the fine structure proton line and the  $2^+ \rightarrow 0^+$  $\gamma$ -ray transition in the daughter nucleus were detected. Comparison between level energies measured and calculated using the Particle Rotor model indicates that <sup>145</sup>Tm might be  $\gamma$ -soft.

**PACS.** 23.20.Lv  $\gamma$  transitions and level energies – 23.50.+z Decay by proton emission – 27.60.+j 90  $\leq A \leq 149$ 

# **1** Introduction

In recent years, proton emitters have become a testing ground for nuclear structure far from the line of stability. The discovery of the deformed proton emitters  $^{131}$ Eu and  $^{141}$ Ho [1] and the proton-decay fine structure in  $^{131}$ Eu [2] initiated detailed studies of the role of deformation in proton decay. The observation of excited states in  $^{141}$ Ho elucidated the role of the Coriolis interaction in proton decay [3].

## 2 Experimental results

In this work, excited states in the moderately deformed proton emitters  $^{145,146,147}\text{Tm}$  were studied using the Recoil-Decay Tagging method. A  $^{92}\text{Mo}$  beam at 417, 460 and 512 MeV impinged on a  $0.6\,\text{mg/cm}^2$   $^{58}\text{Ni}$  target to produce  $^{147}\text{Tm}$ ,  $^{146}\text{Tm}$ , and  $^{145}\text{Tm}$ , respectively. Prompt  $\gamma$  rays were detected in the Gammasphere Ge array. The  $\gamma$  rays were tagged by proton decays observed in a Double-Sided Si Strip Detector placed at the focal plane of the Argonne Fragment Mass Analyzer (FMA). Excited states



Fig. 1. Gamma rays correlated with protons emitted from  $^{145}\mathrm{Tm}.$ 

in <sup>147</sup>Tm have been studied previously using a modest Ge array [4]. Due to a much larger  $\gamma$  detection efficiency the <sup>147</sup>Tm ground-state band was significantly extended and evidence was found for the unfavored signature partner band.

The <sup>146</sup>Tm proton emitter exhibits a complex protondecay level scheme. At least 5 proton lines have been associated with this nucleus [5]. In this work prompt  $\gamma$ -ray spectra correlated with the individual <sup>146</sup>Tm proton lines

<sup>&</sup>lt;sup>a</sup> Conference presenter; e-mail: seweryniak@anl.gov



Fig. 2. The level schemes proposed for  $^{145,147}$ Tm isotopes.



Fig. 3. <sup>145</sup>Tm proton-gamma coincidences detected at the focal plane of the FMA.

were obtained. A rotational band feeding the high-spin isomer, which decays via 1122 keV proton emission, was established in <sup>146</sup>Tm. The energies of the transitions in the band are very similar to those of the ground-state band in  $^{147}$ Tm. This suggests that both bands are based on the  $h_{11/2}$  proton state and that both nuclei have similar deformation. The <sup>145</sup>Tm ground state decays primarily to the  $0^+$  ground state in the daughter <sup>144</sup>Er nucleus. A branch to the  $2^+$  state has been observed recently [6]. The crosssection for producing <sup>145</sup>Tm is about 200 nb. The <sup>145</sup>Tm half-life is only  $3 \mu s$ . To avoid pileup of protons with implants, fast delay-line amplifiers were developed. They allowed the observation of protons with decay times as short as 1  $\mu$ s. The  $\gamma$ -ray spectrum tagged by the <sup>145</sup>Tm protons is shown in fig. 1. A regular sequence of mutually coincident  $\gamma$  rays have properties of a decoupled proton  $h_{11/2}$ band. The  $^{145}$ Tm and  $^{147}$ Tm level schemes are shown in fig. 2. In addition, coincidences between the proton fine structure line and the  $2^+ \rightarrow 0^+$  transition in <sup>144</sup>Er were detected at the focal plane of the FMA (see fig. 3). This is the first time that coincidences between ground-state proton decays and  $\gamma$  rays have been seen. A precise energy of 329(1) keV was measured for the 2<sup>+</sup> state in <sup>144</sup>Er.

### **3** Discussion

The calculated deformation changes rapidly from oblate in  $^{147}$ Tm ( $\beta_2 = -0.18$ ) to prolate in  $^{145}$ Tm ( $\beta_2 = 0.25$ ) [7].



**Fig. 4.** Calculated and measured (crosses) level energies in <sup>145</sup>Tm for different values of  $\beta_2$  (b) and  $\gamma$  (g) (see the legends). The moment of inertia was adjusted to fit the 2<sup>+</sup> excitation energy of the core.

The dominant  $\gamma$ -ray sequences feeding the ground states in <sup>147</sup>Tm and <sup>145</sup>Tm have properties of decoupled  $\pi h_{11/2}$ bands. The  $E_{\gamma}(15/2^- \rightarrow 11/2^-)$  energies, which are close to  $E(2^+)$  in the even-even core, indicate deformation lower than calculated for both <sup>145</sup>Tm and <sup>147</sup>Tm. The  $E(19/2^{-})$ to  $E(15/2^{-})$  ratio, equivalent to  $E(4^{+})/E(2^{+})$  ratio, is about 2.5, which is characteristic of a  $\gamma$ -soft rotor, and is greater than 2.2 for a typical harmonic vibrator, but below the rotor value of 3.33. This suggests an alternative way of viewing the proton decay in  $^{145,147}$ Tm as emission of the  $h_{11/2}$  proton aligned with the angular momentum of the  $\gamma$ -soft deformed core. Results of Particle-Rotor model calculations for the level energies in the <sup>145</sup>Tm ground-state band are shown in fig. 4. The best agreement between the experimental and calculated values both for <sup>145</sup>Tm and  $^{147}$ Tm was found for an asymmetry parameter of  $\gamma \approx 30^{\circ}$ .

This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. W-31-109-ENG-38.

#### References

- 1. C.N. Davids et al., Phys. Rev. Lett. 80, 1849 (1998).
- 2. A.A. Sonzogni et al., Phys. Rev. Lett. 83, 1116 (1999).
- 3. D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2000).
- 4. D. Seweryniak et al., Phys. Rev. C 55, R2137 (1997).
- 5. T.N. Ginter et al., Phys. Rev. C 68, 034330 (2003).
- 6. M. Karny et al., Phys. Rev. Lett. 90, 012502 (2003).
- 7. P. Moeller et al., At. Data Nucl. Data Tables 59, 185 (1995).