

Tracing Time Scales of Fluid Residence and Migration in the Crust

R. Yokochi, N.C. Sturchio, R. Purtschert, W. Jiang, G.-M. Yang, P. Mueller, Z.-T. Lu, and B.M. Kennedy

The Crust

- The Crust?
 - Every naturally occurring solid you can see on Earth
 - 5-50km thick from the surface
 - Geological extract containing high concentration of U, Th, K (Production of ⁴He, ²¹Ne, ³⁹Ar, ⁴⁰Ar, ⁸⁵Kr, ¹³¹⁻¹³⁶Xe)
- Fluids in the crust?
 - Groundwater (H₂O)
 - Natural gases/Petroleum (Hydrocarbons)
 - Volatiles associated with magmatism (CO₂-dominated)

Fluids in the crust

Evidence of interaction with the crust

 Gradual addition of radiogenic/nucleogenic isotopes as flow distance increases

Torgersen et al., 1989 Lehmann et al., 2003

Geochemical system in the crust

Geochemical system in the crust

Outline

1. Introduction: Fluids in the Crust

2. Theoretical analysis of complex geochemical system

1. Case study at Yellowstone National Park

Complex Geochemical System?

Processes

- Mixing
 - Episodic:
 - Magmatic volatiles
 - Atmosphere at different stages

Continuous addition of radioactive isotopes

C_i(t)/C_i(0)

Model:

For $d^iC_R/dt = \alpha$ (constant):

$${}^{i}C(t) = {}^{i}C_{0} \times e^{-\ell_{i}t} + \frac{\partial}{\ell_{i}}(1 - e^{-\ell_{i}t})$$

Supply-decay equilibrium

Modeled Isotopic abundance

 $\alpha/(\lambda_i C_0)$ 10⁻² 0.1 -3 10 0.01 -4 10 0.001 10⁻⁵ 10^{-4} $\alpha = 0$ 10⁻⁵ 2 8 10 12 6 14 $\text{Time}(t/t_{1/2})$

Notes:

- Input rate determined once in equilibrium (α/λ)
- No direct implication on "Age"

Continuous addition of stable isotopes

Model:

Evolution of isotope ratios

Model Modeled isotope ratios $(\lambda_i C_0)/\alpha$ ${}^{ij}R_F(t) = \frac{{}^{i}C(t)}{{}^{j}C(t)} = \frac{{}^{i}C_0 \cdot e^{-{}^{\prime}{}_{i}t} + \frac{\partial_i}{/}(1 - e^{-{}^{\prime}{}_{i}t})}{{}^{j}C_0 + \partial_j \cdot t}$ 1000 100 $R_F(t)/R_C$ $\rightarrow \frac{\partial_i / I_i}{{}^j C_0 + \partial_i \cdot t}$ 0.1 Steady-state 0.01 $\rightarrow \frac{a_i/a_j}{I_j \cdot t}$ 10^{-4} Initial correction 10 100 1000 0.1 10^{4} Time $(t/t_{1/2})$ Notes: Input rate from radionuclide $\rightarrow \frac{{}^{g}R_{C}}{/...t}$ Common α Accumulation from stable isotope **New Chronometer!**

Applicable system

Isotopes

- Radioactive isotopes produced in-situ
 - ³⁹Ar by ³⁹K(n,p)³⁹Ar
 - ⁸⁵Kr by ²³⁸U fission
 - No significant ⁸¹Kr
- Stable isotope
 - ⁴He and ⁴⁰Ar
 - Concentrations of other nonradiogenic stable isotopes in rocks are low
- Similar α value: ³⁹Ar/⁴⁰Ar

An example:

- Ar input from a reservoir rock with ³⁹Ar/⁴⁰Ar* ratio of 100 Ra.
- The ratio evolves independent of the input rate (for a constant ³⁹Ar/⁴⁰Ar* in the rock)

(GCA; Yokochi, Sturchio & Purtschert, 2012)

³⁹Ar/⁴⁰Ar* Chronometer

Details

Difficulties+

Closed system Estimate

- Age $t_F \gg \frac{R_C}{R_E} \times \frac{R_C}{R_E}$
- Time range
 - Detectable ⁴⁰Ar/³⁶Ar anomaly relative to initial
 - Detectable amount of ³⁹Ar
 - Up to a few Myr (>>1800 yrs)

- Deviation associated with gas loss
- Production rate?
- Extent of source rock?

(GCA; Yokochi, Sturchio & Purtschert, 2012)

Krypton-85

Is subsurface ⁸⁵Kr significant?

- Production Rates
 - ⁸⁵Kr: 2.5-8 ×10⁻⁴ atoms/g/yr
 - ³⁹Ar: 0.04-0.9 atoms/g/yr
- ⁸⁵Kr/³⁹Ar: 0.001 -0.01
 - Modern Air >> Subsurface
 - Surface contamination dominates ⁸⁵Kr budget
 - Good tracer of shallow contamination

Summary 1: Model Study

- Subsurface-produced ³⁹Ar can serve as chronometer when combined with ⁴⁰Ar*.
- ⁸⁵Kr and ⁸⁵Kr/³⁹Ar ratio are ideal tracers of modern atmospheric contamination.
- There is no subsurface production of ⁸¹Kr.

Case Study – Yellowstone National Park

Motivation

 How much time does it take for the meteoric water to go down and come back up?

Participants

Fieldwork

Sampling Sites

Sampling Method

Data

ATTA Laboratory, Physics Division, Argonne National Laboratory, Argonne, IL 60439 (630)252-4123 www.phy.anl.gov/mep/atta/

Atom Trap Trace Analysis (ATTA) Report

Report No. 002 Report Date 08 Dec 2011 Project Name Yellowstone

Samples supplied by: Neil Sturchio (UIC), Reika Yokochi (Chicago), Roland Purtschert (Bern)

We: fiamy 12-08-2011

Samples analyzed by: Wei Jiang, Guo-Min Yang, Peter Mueller, Zheng-Tian Lu (ANL)

ATTA trace No.	Sample No.	Sampling comments	Sampling Date	Size (micro-L)	ATTA Date	⁸⁵ Kr (dpm/cc)	⁸¹ Kr sample / air	ATTA Lab comments
10014	\$12	Frying Pan Air, #41	20 Feb 2008	~10	01 Nov 2011	56.2 ± 2.6	1.03 ± 0.057	Local Air
10015	S15	Frying Pan	05 Mar 2008	~10	03 Nov 2011	43.6 ± 2.2	1.03 ± 0.065	
10016	S18	Ojo Caliente	18 Mar 2008	~10	06 Nov 2011	36.9 ± 1.9	1.06 ±0.063	
10017	S14	Beryl	07 Mar 2008	~3.4	08 Nov 2011	51.1±3.1	$\textbf{0.971} \pm \textbf{0.090}$	(air contamination,%99.7 air, P_N2/P_Kr=250 on RGA)
10020	S17	MV1, #42	22 Feb 2008	~1.4	15 Nov 2011	33.4 ± 6.3	1.66 ± 0.33	← Interesting!
10024	S4	MV2, #43	18 Feb 2008	~7	06 Dec 2011	58.9 ± 3.0	0.92 .061	(Sample cylinder valve leak)

Notes

- 85 Kr ($t_{1/2} = 10.76 \pm 0.02$ yr) abundance is reported in the traditional unit of dpm/cc (decays per minute per cc STP of krypton).
 - Conversion: 100 dpm/cc corresponds to the isotopic at
 - The reported ⁸⁵Kr value is as measured on the ATTA a Need to be evaluated in future work te.
- ⁸¹Kr ($t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample where $t_{1/2} = 229 \pm 11$ kyr) abundance is reported as the sample w

Data Analysis

Other Data

- Chemical composition (UIC)
 - $O_2 > \%$
 - Correction for air contamination during sampling
- Noble gas isotopes (LBNL)
 - ³He/⁴He and ⁴⁰Ar/³⁶Ar variation
 - Partial degassing (Kennedy et al., 1985)
- ³⁹Ar (Purtschert et al., 2009)
 - ³⁹Ar >> Atmospheric (up to ×6)

Discussions 1: ⁸⁵Kr

Fraction of young air In the samples

- Clear contribution of modern ⁸⁵Kr
- Total: 36-74% Kr contamination during sampling = corrected
- Fraction of young air contribution depends on the age of the air component.
- Lower limit on the fraction of modern ⁸¹Kr = Upper age limit goes up (Although measured values were atmospheric)

Discussions 2: ³⁹Ar

Reservoir Rocks and Production Rates

- Lava Creek Tuff
 Age: 640 kyr
 ³⁹Ar_{pro}: 0.79 atoms/g/yr
 ³⁹Ar/⁴⁰Ar*=1.3×10⁵ Ra
- Central Plateau Member Age: 160 kyr
 ³⁹Ar_{pro}: 0.57 atoms/g/yr
 ³⁹Ar/⁴⁰Ar*=9.2×10⁴ Ra

Fluid Data Analysis

$$t_F \gg \frac{R_C}{R_F} \times \frac{1}{I_{39}}$$

- Ages (for closed system)
 - Frying Pan: 130 kyr
 - Beryl Spring: 115 kyr
 - Ojo Caliente: 16 kyr
- External flux?
 - Ar from older reservoir=>younger age

Summary 2: YNP

Chronological Constraints

- Geothermal activity over >100 kyr (³⁹Ar age) if noble gas source is the reservoir rock
- ⁸¹Kr age: Consistent with Ar age

Discussions

- The chronometer will improve if another parameter determines
 - The fraction (or age) of young meteoric component (⁸¹Kr)
 - The source of radiogenic/nucleogenic isotopes (³⁹Ar) (reservoir rock vs. Pre-Cambrian basement)
- Systematic, multi-component study is essential for interpreting the complex system

Conclusions

- Nucleogenic ³⁹Ar, an obstacle of ventilation age dating, can serve as a chronometer when combined with ⁴⁰Ar*.
- Isotopic abundances of noble gas radionuclides in geothermal gases from Yellowstone National Park were analyzed for the first time, suggesting long water residence time in the crust
- Systematic, multi-component study is essential for interpreting the complex system
- ³⁹Ar/⁴⁰Ar*chronometer is applicable for old groundwater dating as well as tracing the time scale of fluid migration in a variety of scenarios including analogue and pilot studies of CO₂ sequestration and the formation of petroleum or natural gas reservoirs.
- Looking forward to new data!