

Mean-field and Beyond Past, Present and Future

- Mean-field methods: what can and what cannot be calculated
- Applications and good reasons to go beyond mean-field
- How to do it (today)
- Applications
- The density functional theory: theorems
- Missing ingredients, new developments
- What remains to be done

- Our group:
- The precursors: P. Bonche, H. Flocard, M. Weiss, J. Dobaczewski
- The successors: M. Bender, T. Duguet
- Many collaborators: G. Bertsch, S. Cwiok, W. Nazarewicz, J. Skalski, P. Magierski...

Today: the working tools

- Mean-field with effective interactions
- Typical applications
- First step beyond mean-field

- symmetry restorations

- configuration mixing

• Selected applications

Mean-field Methods

- Based on an "effective interaction" or a "density functional" The (small number of) parameters of the effective interaction are fixed by general considerations (no local adjustments)
- Pairing correlations are included at the BCS or better HFB level
- Full self-consistency
- No restrictions to a few shells, mean-field equations are solved as precisely as one wishes.
- Spherical and deformed nuclei are treated on the same footing, no "parametric deformation"

An example of an effective interaction: the Gogny force

It contains:

1-3

- A finite range central term:

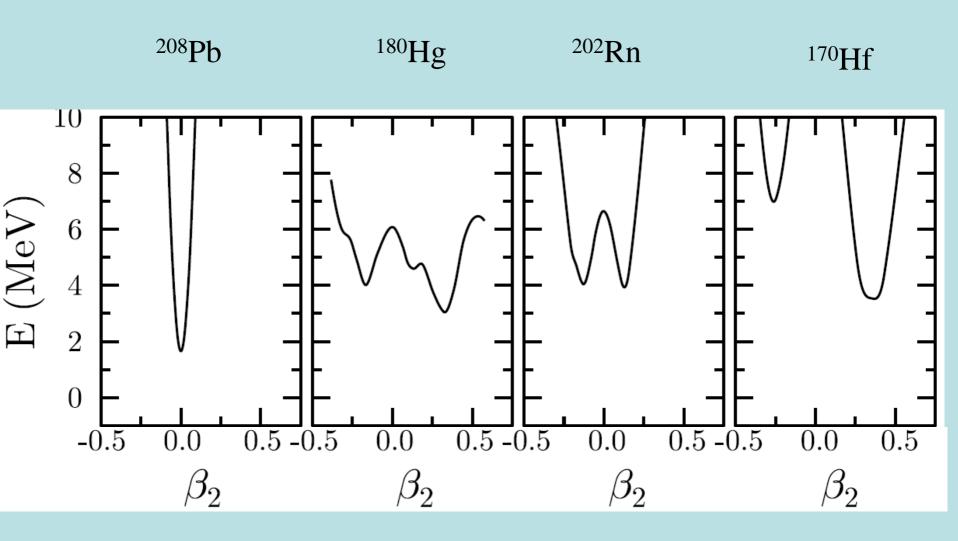
$$V_C = \sum_{i=1,2} (V_W^i + V_M^i P^r + V_B^i P^\sigma + V_H^i P^\sigma P^r) exp(-r^2/b_i^2)$$

- A zero range density dependent term

$$t_3(1+x_3P^{\tau})\rho(\overrightarrow{r})^{\alpha}$$

- Spin orbit and Coulomb

Parameters are adjusted on nuclear matter properties (saturation, ...) properties of a few magic nuclei



Mean-field energy curves (β_2 proportional to Q)

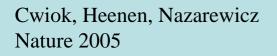
The competitors

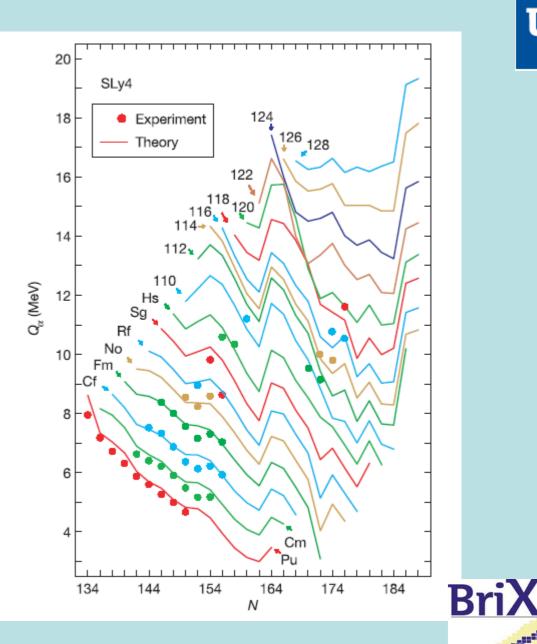
Three families:

- Gogny: finite range including a density dependence, same interaction for HF and pairing
- (Bruyères le Chatel, Madrid, some Japanese groups)
- Skyrme: zero range, specific interaction for pairing, easy ("French group", "Polish group", P. Rheinardt et al., Japanese groups,...)
- RMF: relativistic but no exchange, pairing non relativistic (Munich-Zagreb,)

Skyrme HFB

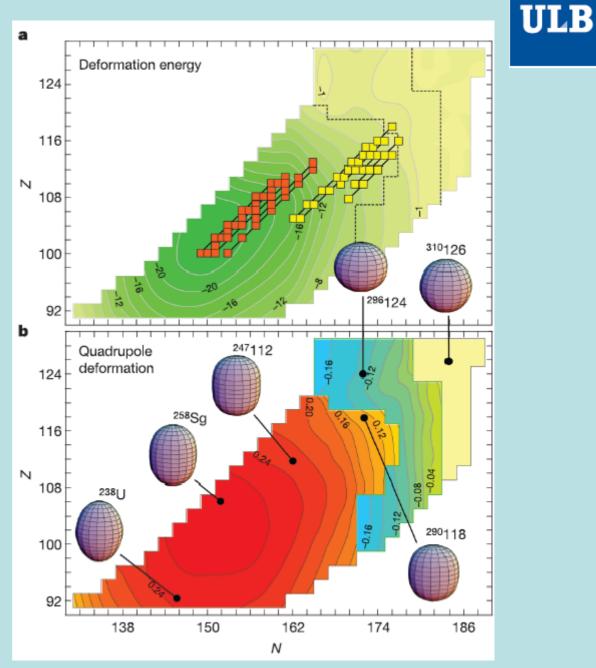
 Q_{α} for isotopic chains for super heavy elements (only even-even)





Skyrme HFB

Deformation properties of super-heavies



Beyond ground state properties of even-even nuclei

Breaking of time reversal invariance

by a cranking constraint:

 $H' = H - \omega J_x$ rotational bands for deformed nuclei

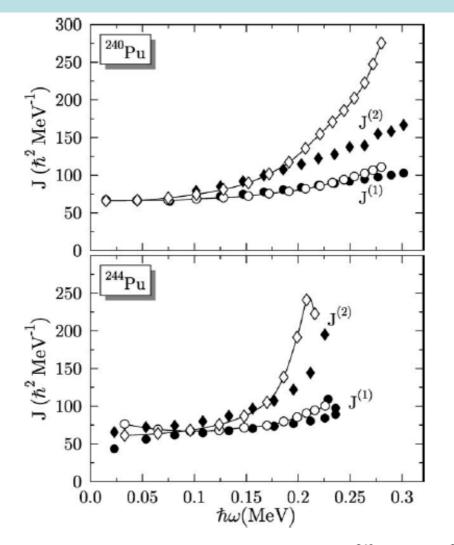
by quasi particle excitations: Odd nuclei : 1 qp states:

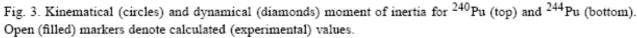
Even nuclei: 2qp states

$$eta_i^\dagger | 0
angle$$

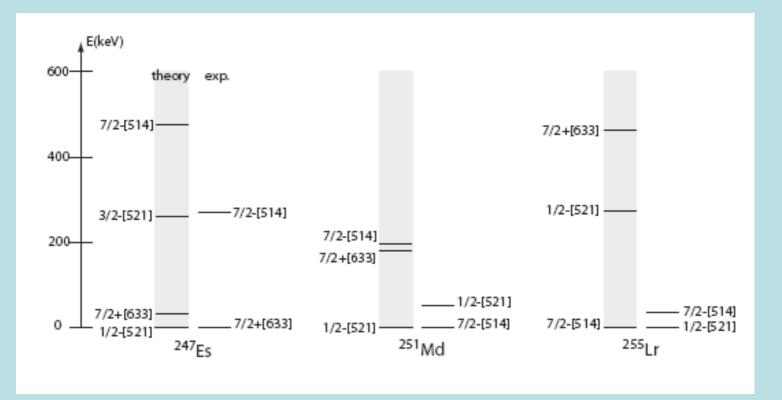
Still a mean-field method Full self-consistency for mean-field and pairing

Moments of inertia





Spectra of odd Z nuclei



Plus and minus of the mean-field approach:

Plus:

Starts from an effective interaction: generality Can describe any kind of shapes (from ground state to fission) Cranking (or qp excitations) well justified for deformed nuclei

Minus:

Validity only for energy (variational) and one-body operators Breaking of symmetries (no direct determination of transitions) Soft nuclei? Shape coexistence? Effects of correlations beyond mean-field on masses?

Correlations

Explicitly included at the mean-field level:

- Statistics (fermions)
- Pairing (BCS or HFB)
- Deformation (can bring up to 20 MeV!)

Absent:

- Symmetry restoration
- Configuration mixing (shape, multi qp excitations, ...)

Can all missing correlations be included in the interaction? ("DFT spirit")

Beyond mean-field

Set of mean-field wave functions depending on axial q

•Projection on N, Z, J:

$$|J0q\rangle = \frac{1}{\mathcal{N}_{J0q}}\hat{P}_{00}\hat{P}_{Z}\hat{P}_{N}|q\rangle,$$

•New wave functions by mixing on q:

$$|J0k\rangle = \sum_{q} f_{J,k}(q) |J0q\rangle$$

with $f_{J,k}(q)$ determined by minimizing the energy:

$$E_{J,k} = \frac{\langle J0k|\hat{H}|J0k\rangle}{\langle J0k|J0k\rangle}$$

PLUS:

-Very rich basis with many ph components (more precisely qp excitations with respect to a spherical basis)

-GCM is not limited to small amplitude motion as the QRPA

MINUS:

- -Kind of ph excitations determined by the constraint used in the mean-field
- -Only time reversed pairs are excited
- -Up to now, only axial states

Projection on angular momentum

From intrinsic to laboratory frame of reference

No approximation based on the collective model for transition probabilities.

The spectroscopic quadrupole moment is given by:

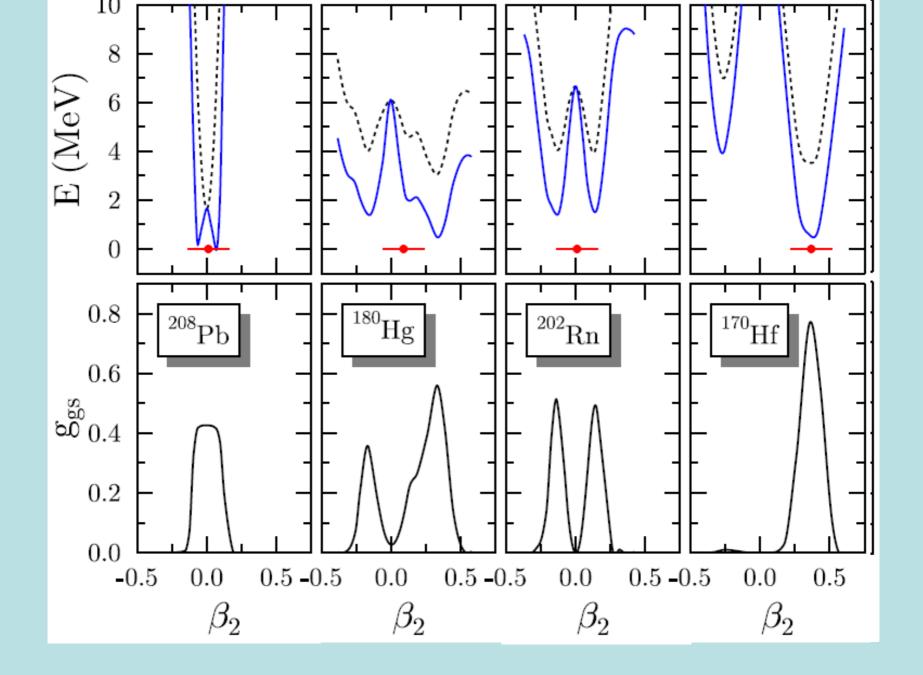
$$Q_{c}(J_{k}) = \sqrt{\frac{16\pi}{5}} \langle J, M = J, k | \hat{Q}_{20} | J, M = J, k \rangle$$

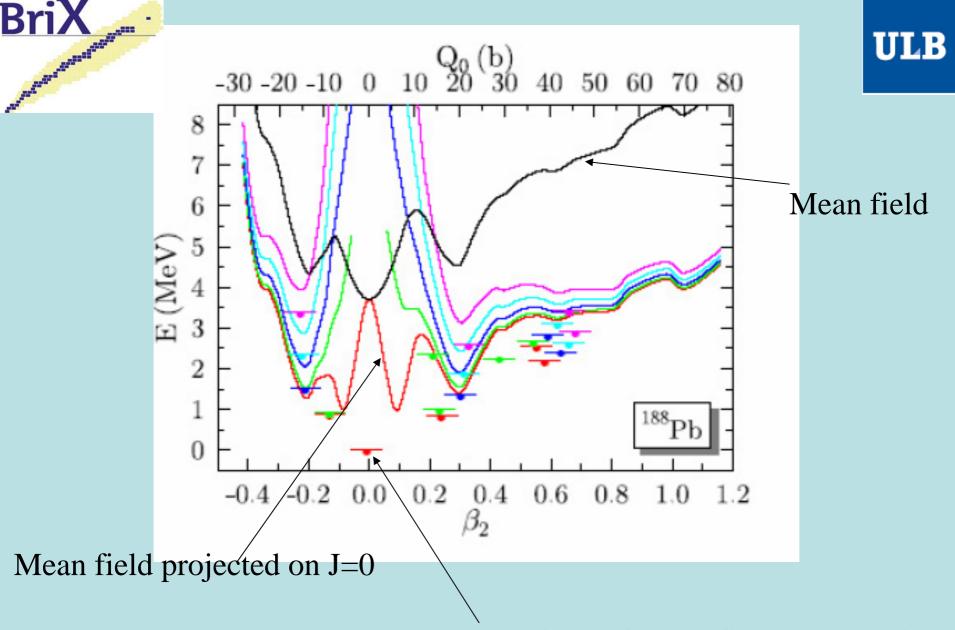
= $\sqrt{\frac{16\pi}{5}} \frac{\langle JJ20 | JJ \rangle}{\sqrt{2J+1}}$
 $\times \sum_{q,q'} f_{J,k}^{*}(q) f_{J,k}(q') \langle Jq | | \hat{Q}_{20} | | Jq' \rangle,$

Deformation parameters similar to collective ones have to be defined:

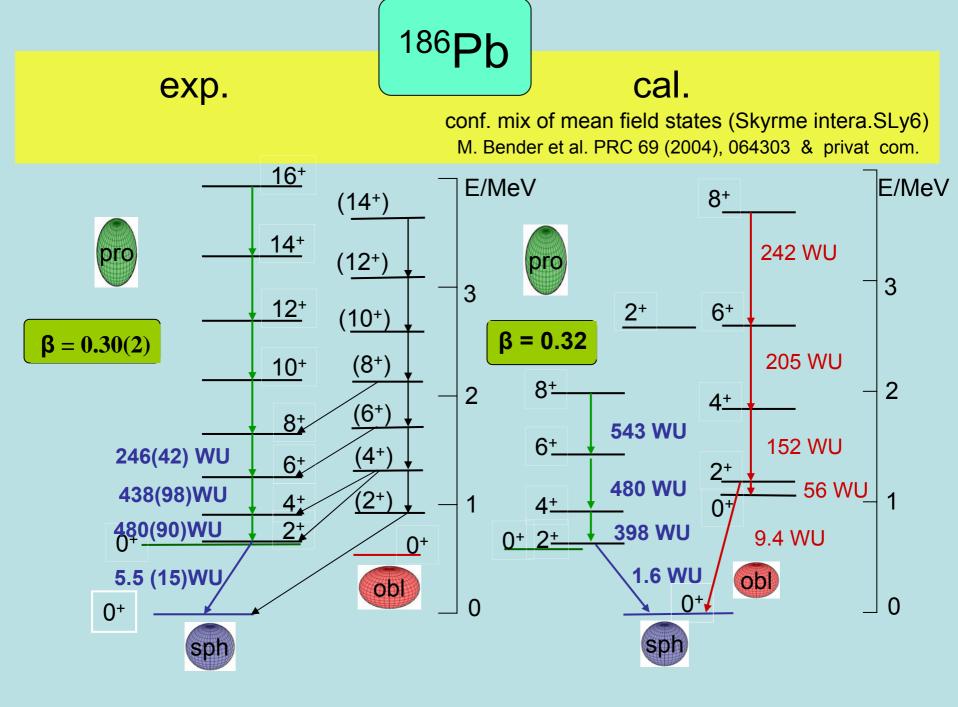
$$\beta_2^{(s)}(J_k) = \sqrt{\frac{5}{16\pi}} \frac{4\pi Q_2^{(s)}(J_k)}{3R^2 Z}$$
$$Q_2^{(s)}(J_k) = -\frac{2J+3}{J} Q_c(J_k)$$

with $R = 1.2 A^{1/3}$ and K = 0.



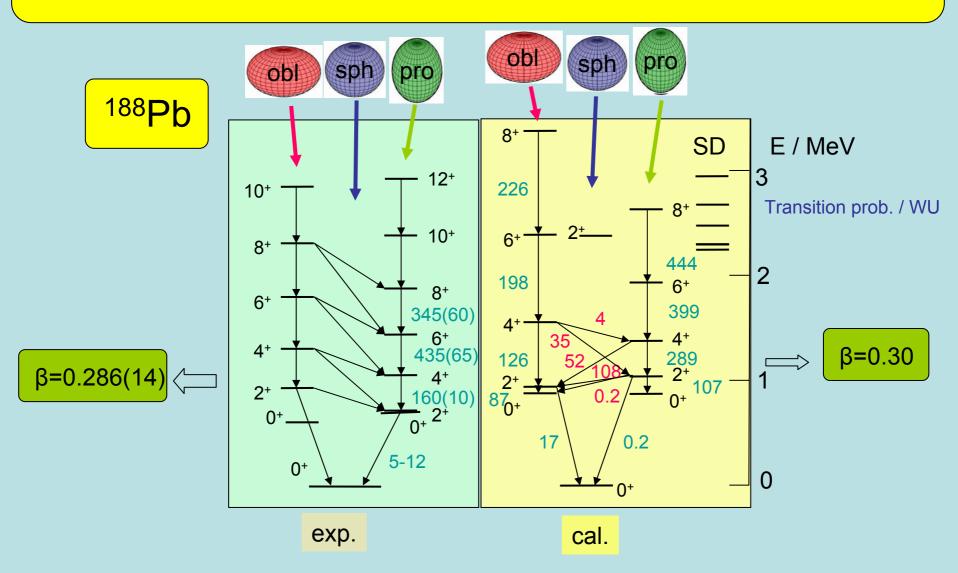


Bars in red: 0⁺ states obtained after configuration mixing



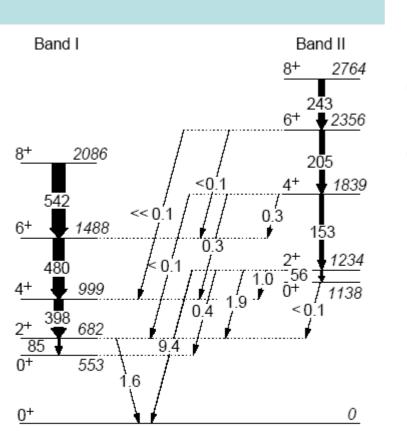
Hartree-Fock + BCS (Skyrme SLy6 interaction + density dependent zero-range pairing force) ⇒configuration mixing of angular-momentum and particle-number projected self-consistent mean field states

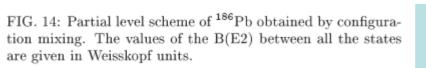
(M. Bender, P. Bonche, T. Duguet, and P.H. Heenen, PRC 69, 2004, 064303)

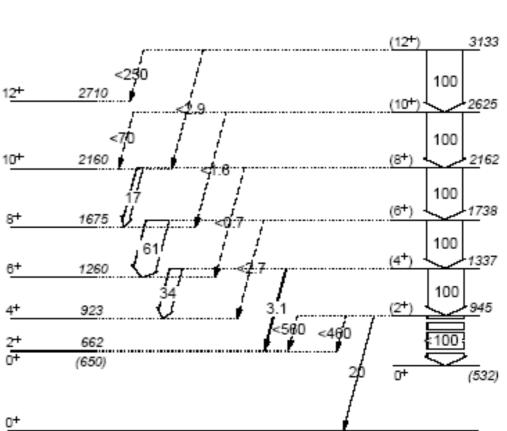


ULB

Band II







Band I

Pb isotopic shifts

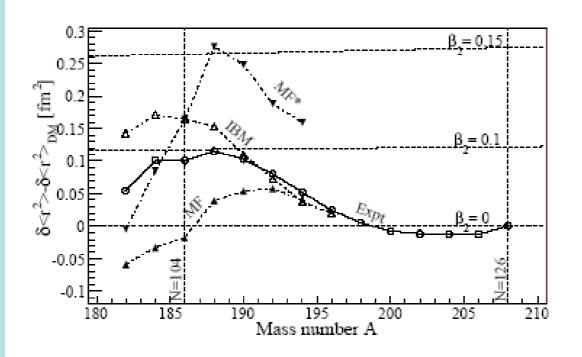
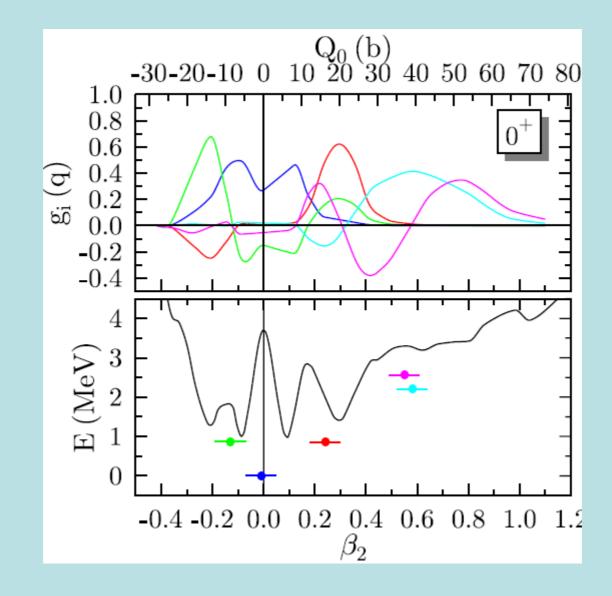
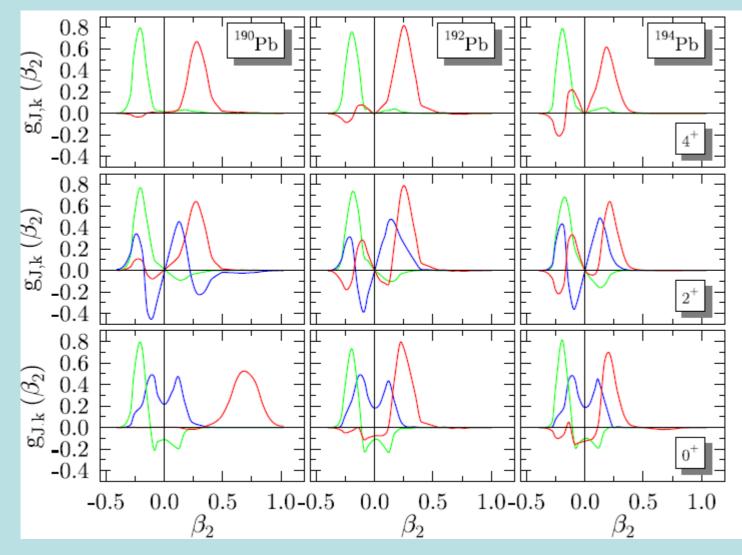


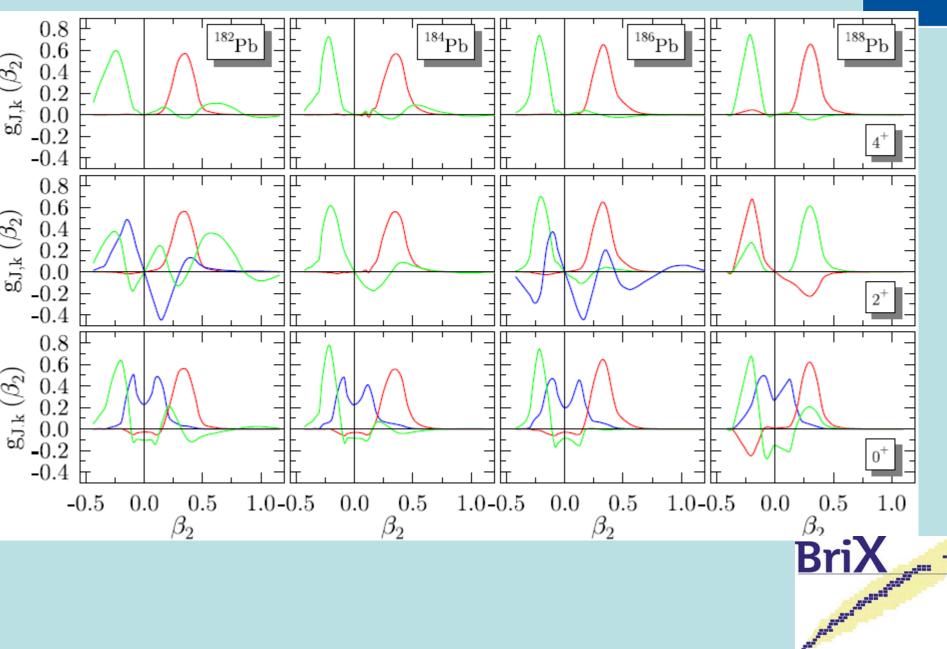
FIG. 3: Difference from the experimental mean square charge radii (*Expt*), the beyond mean field calculations with normal [4] (*MF*) and decreased pairing [18] (*MF**) and the IBM calculations (*IBM*) to the droplet model calculations for a spherical nucleus. Isodeformation lines from the droplet model at $\beta_2=0.1$ and 0.15 are shown.

Collective wave functions

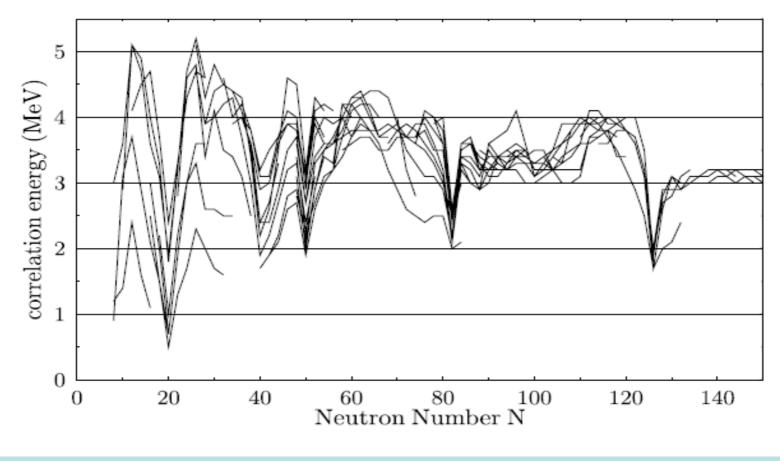




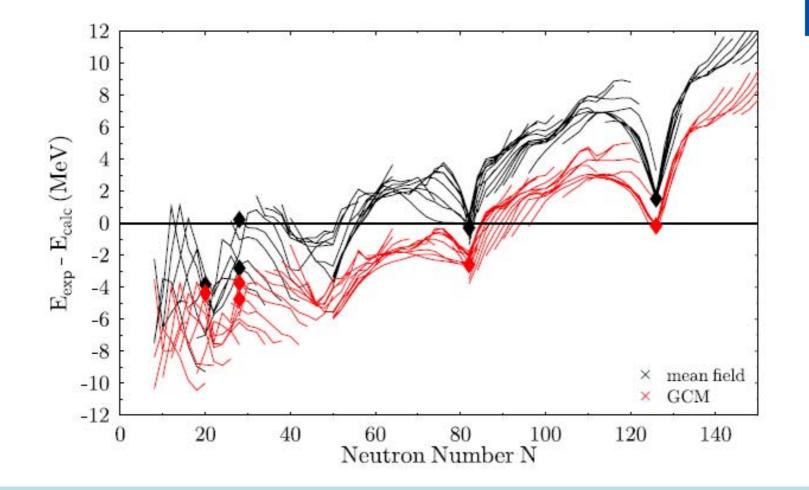
BriX .



Global calculations



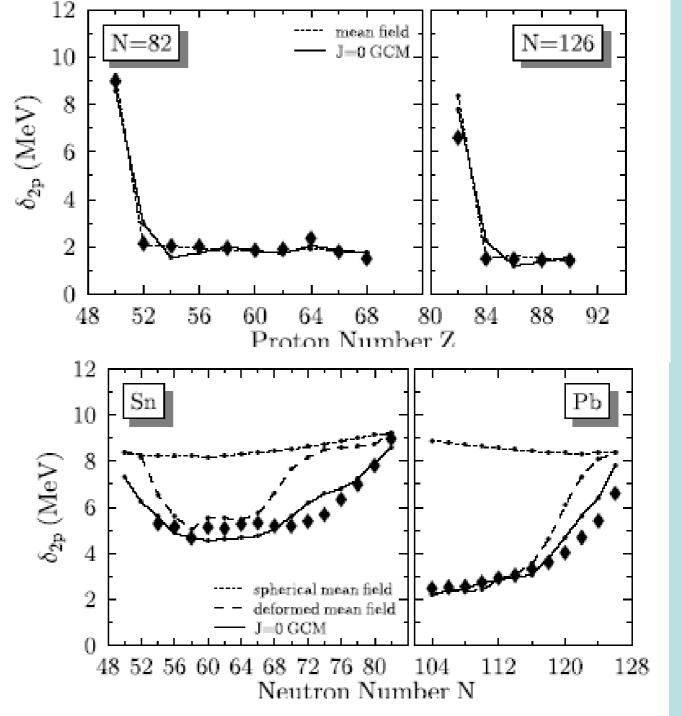
Correlations due to - symmetry restorations - configuration mixing



Difference between exp and theory for masses Red: with correlations

Two-proton gap for chains

Isotonic



Isotopic