A pygmy quadrupole resonance in the stable Sn isotopes

M. Spieker¹, S. Pickstone¹, S. Prill¹ and A. Zilges¹

¹ Institute for Nuclear Physics, University of Cologne (UoC), Zuelpicher Strasse 77,

50937 Cologne (Germany)

An extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in the stable even-even Sn isotopes [1] will be presented. In this study, $(\alpha, \alpha' \gamma)$ and (γ, γ') experiments were performed on ¹²⁴Sn [2] as well as lifetime measurements in ^{112,114}Sn using the recently established $(p, p'\gamma)$ Doppler-shift attenuation (DSA) coincidence technique [3]. In all experiments, $J^{\pi} = 2^+$ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ, γ') and the $(p, p'\gamma)$ DSA experiments, while the $(\alpha, \alpha' \gamma)$ experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α -particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupoletype oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ -decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124 Sn [2, 4].

Supported by the Deutsche Forschungsgemeinschaft (ZI 510/7-1).

- [1] N. Tsoneva and H. Lenske, Phys. Lett. B 695, 174 (2011).
- [2] M. Spieker, N. Tsoneva, A. Zilges *et al.*, Phys. Lett. B **752**, 102 (2016).
- [3] A. Hennig, A. Zilges *et al.*, Nucl. Instr. and Meth. A **794**, 171 (2015).
- [4] L. Pellegri, A. Bracco, N. Tsoneva et al., Phys. Rev. C 92, 014330 (2015).