## The quark intrinsic motion in a covariant approach

Petr Zavada

Institute of Physics, Prague, Czech Rep.

(based on collaboration and discussions with A.Efremov, P.Schweitzer and O.Teryaev)

**Drell-Yan Scattering and the Structure of Hadrons** 

Trento, 21-25 May 2012

ECT\* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

### Outline

- A few comments on quark kinematics and effects of Lorentz invariance
- TMDs: numerical predictions based on covariant QPM
- Summary

### **Intrinsic motion**

#### ... is required by QM, a few examples:

electrons in atom non-relativistic motion, OAM & spin are decoupled

 $d \approx 10^{-10} m$ ,  $p \approx 10^{-3} MeV$ ,  $m_e \approx 0.5 MeV$ ,  $\beta \approx 0.002$ 

nucleons in nucleus

 $d \approx 10^{-15} m$ ,  $p \approx 10^2 MeV$ ,  $m_N \approx 940 MeV$ ,  $\beta \approx 0.1$ 

quarks in nucleon relativistic motion, OAM & spin cannot be decoupled

 $d \approx 10^{-15}m$ ,  $p \approx 10^2 MeV$ ,  $m_e \approx 5 MeV$ ,  $\beta \approx 1$ 

### **Kinematic variables**

... intrinsic motion generates the quark momenta  $p, p_L, p_T, OAM$ ...

Instead of  $p_L \equiv p_1$  the light cone variable is commonly used.

$$x = \frac{p_0 - p_1}{P_0 - P_1}$$

#### **Advantages:**

- Lorentz invariance (along collision axis)
- Simple interpretation in the infinite momentum frame
- Relation to Bjorken variable which appears in the DIS data

$$x_B = \frac{Q^2}{2Pq}$$

### **Kinematics of DIS**

**Bjorken variable** 

$$x_B = \frac{Q^2}{2Pq}$$

Light cone ratio

$$x = \frac{p_0 - p_1}{P_0 - P_1}$$

depends on kinematics of:

probing lepton

quark (parton)

enters:

**Structure functions** 

**Distribution functions** 

and is important for:

Experimentalists.

Theorists.

# Despite their different origin both the variables can be identified at <u>sufficiently</u> large Q<sup>2</sup>:

$$x_B \simeq x \equiv \frac{p_0 - p_1}{P_0 - P_1}$$

**Constraint**:

$$0 \le x_B \le 1 \quad \Longrightarrow \quad 0 \le \frac{p_0 - p_1}{P_0 - P_1} \le 1$$

### **Kinematics - further conditions**



-in an opposite case the description is apparently incomplete...

*Rotational-symmetry:* The kinematical region  $\mathcal{R}^3$  of the quark intrinsic momenta  $\mathbf{p} = (p_1, p_2, p_3)$  in the nucleon rest frame has rotational-symmetry (i.e.  $\mathbf{p} \in \mathcal{R}^3 \Rightarrow \mathbf{p}' = \mathbf{R}\mathbf{p} \in \mathcal{R}^3$ , where **R** is any rotation in  $\mathcal{R}^3$ ). For example, in terms of the covariant QPM means that probabilistic distribution of the quark momenta is controlled by some function  $G(pP/M, Q^2)$ 

-to simplify discussion, only leading order is considered...

<u>P.Z., Phys.Rev.D</u> 85, 037501(2012)

FIG. 1.

### **Rest frame:**

$$x = \frac{p_0 - p_1}{M} \quad \text{AND} \quad \begin{array}{l} 0 \leq \frac{p_0 - p_1}{M} \leq 1 \\ \text{rot. sym.} \end{array}$$
$$0 \leq \frac{p_0 + p_1}{M} \leq 1 \end{array}$$

Combinations (+,-) of both imply:

$$0 \le |p_1| \le p_0 \le M, \qquad |p_1| \le \frac{M}{2}$$
  
rot. sym.  $\Rightarrow$   
$$0 \le p_T \le p_0 \le M, \qquad p_T \le \frac{M}{2} \qquad p_T = \sqrt{p_2^2 + p_3^2}$$
  
$$0 \le |p| \le p_0 \le M, \qquad |p| \le \frac{M}{2} \qquad |p| = \sqrt{p_1^2 + p_2^2 + p_3^2}$$

#### Shortly:

#### If we assume Lorentz invariance and rotational symmetry in the rest frame, then:

$$0 \le x \le 1 \qquad \Longrightarrow \qquad p_T < M/2$$

#### OR in other words the conditions:

- A. Lorentz invariance
- **B.** Rotational symmetry

**C.**  $p_T > M/2$ 

**D.**  $0 \le x \le 1$ 

are contradictory!

For the on-mass-shell approach the more strict relations are obtained, e.g.

$$x \ge \frac{m^2}{M^2}$$



FIG. 2. Upper limit of the quark transversal momentum as a function of x for  $\mu = 0$  (solid line), 0.1 (dashed line), 0.2 (dotted line) and 0.3 (dash-dotted line).

$$p_T^2 \le M^2 \left( x - \frac{m^2}{M^2} \right) (1 - x)$$

... and particularly for massless quarks:

 $\langle p_T^2(x) \rangle \leq M^2 x (1-x)$ 

J. Sheiman Nucl. Phys., **B171**, 445 (1980)

The results of kinematical analysis can be illustrated by the covariant QPM which is based on the same inputs:

### LORENTZ INV. & ROT. SYMMETRY & x=x<sub>B</sub>

### **3D covariant parton model**

#### General framework



$$\Delta \sigma(x, Q^2) \sim |A|^2$$
$$|A|^2 = L_{\alpha\beta} W^{\alpha\beta}$$

The quarks are represented by the quasifree fermions, which are in the proton rest frame described by the set of distribution functions with spheric symmetry

$$G_q^{\pm}(p_0)d^3p;$$
  $p_0 = \sqrt{m^2 + \mathbf{p}^2},$ 

which are expected to depend effectively on  $Q^2$ . These distributions measure the probability to find a quark in the state

$$u(p,\lambda\mathbf{n}) = \frac{1}{\sqrt{N}} \begin{pmatrix} \phi_{\lambda\mathbf{n}} \\ \frac{\mathbf{p}\sigma}{p_0+m}\phi_{\lambda\mathbf{n}} \end{pmatrix}; \qquad \frac{1}{2}\mathbf{n}\sigma\phi_{\lambda\mathbf{n}} = \lambda\phi_{\lambda\mathbf{n}}$$

where *m* and *p* are the quark mass and momentum,  $\lambda = \pm 1/2$  and **n** coincides with the direction of target polarization **J**.

 $W^{\alpha\beta} \Rightarrow$   $F_1(x, Q^2)$   $F_2(x, Q^2)$   $g_1(x, Q^2)$   $g_2(x, Q^2)$ 

### **Structure functions**

# **Input:** 3D distribution functions in the proton rest frame

The distributions allow to define the generic functions G and  $\Delta G$ :  $G(p_0) = \sum_q e_q^2 G_q(p_0), \quad G_q(p_0) \equiv G_q^+(p_0) + G_q^-(p_0),$   $\Delta G(p_0) = \sum_q e_q^2 \Delta G_q(p_0), \quad \Delta G_q(p_0) \equiv G_q^+(p_0) - G_q^-(p_0)$ from which the structure functions can be obtained.

#### $F_{1\nu}$ $F_2$ – exact and manifestly covariant form:

$$F_1(x) = \frac{M}{2} \left( \frac{B}{\gamma} - A \right), \qquad F_2(x) = \frac{Pq}{2M\gamma} \left( \frac{3B}{\gamma} - A \right),$$

where

$$A = \frac{1}{Pq} \int G\left(\frac{Pp}{M}\right) [m^2 - pq] \delta\left(\frac{pq}{Pq} - x_B\right) \frac{d^3p}{p_0},$$
  
$$B = \frac{1}{Pq} \int G\left(\frac{pP}{M}\right) \left[\left(\frac{Pp}{M}\right)^2 + \frac{(Pp)(Pq)}{M^2} - \frac{pq}{2}\right] \delta\left(\frac{pq}{Pq} - x_B\right) \frac{d^3p}{p_0},$$
  
$$\gamma = 1 - \left(\frac{Pq}{Mq}\right)^2.$$

### ... similarly for $g_1, g_2$ :

$$g_1 = Pq\left(G_S - \frac{Pq}{qS}G_P\right), \qquad g_2 = \frac{(Pq)^2}{qS}G_P,$$

where

$$G_{P} = \frac{m}{2Pq} \int \Delta G\left(\frac{pP}{M}\right) \left[\frac{pS}{pP + mM}1 + \frac{1}{mM}\left(pP - \frac{pu}{qu}Pq\right)\right] \\ \times \delta\left(\frac{pq}{Pq} - x_{B}\right) \frac{d^{3}p}{p_{0}},$$

$$G_{S} = \frac{m}{2Pq} \int \Delta G\left(\frac{pP}{M}\right) \left[1 + \frac{pS}{pP + mM} \frac{M}{m}\left(pS - \frac{pu}{qu}qS\right)\right] \\ \times \delta\left(\frac{pq}{Pq} - x_{B}\right) \frac{d^{3}p}{p_{0}};$$

$$u = q + (qS)S - \frac{(Pq)}{M^{2}}P.$$

### **Comment:**

In the limit of usual collinear approach assuming p = xP, (i.e. intrinsic motion is suppressed!) one gets known relations between the structure and distribution functions:

$$F_2(x) = x \sum_q e_q^2 q(x)$$

$$g_1(x) = \frac{1}{2} \sum_q e_q^2(q^+(x) - q^-(x))$$

### **3D covariant parton model**

#### Model implies relations and rules:

between 3D distributions and structure functions

LI & RS generate relations between distributions: WW relation, sum rules WW, BC, ELT; helicity↔transversity, transversity↔pretzelosity; relations between different TMDs, recently also TMDs↔PDFs

...see A.Efremov, P.Schweitzer, O.Teryaev and P.Z., Phys.Rev.D 83, 054025(2011) and citations therein.

### TMDs

 $\phi(x,\mathbf{p}_T)_{ij}$ 

#### light-front correlators

$$\frac{1}{2} \operatorname{tr}[\gamma^{+} \phi(x, \mathbf{p}_{T})] = f_{1}(x, \mathbf{p}_{T}) - \frac{\varepsilon^{jk} p_{T}^{j} S_{T}^{k}}{M} f_{1T}^{\perp}(x, \mathbf{p}_{T})$$

$$\frac{1}{2} \operatorname{tr}[\gamma^{+} \gamma_{5} \phi(x, \mathbf{p}_{T})] = S_{L} g_{1}(x, \mathbf{p}_{T}) + \frac{\mathbf{p}_{T} \cdot \mathbf{S}}{M} g_{1T}^{\perp}(x, \mathbf{p}_{T})$$

$$\frac{1}{2} \operatorname{tr}[i\sigma^{j+} \gamma_{5} \phi(x, \mathbf{p}_{T})] = S_{T}^{j} h_{1}(x, \mathbf{p}_{T}) + S_{L} \frac{p_{T}^{j}}{M} h_{1L}^{\perp}(x, \mathbf{p}_{T})$$

$$+ \frac{(p_{T}^{j} p_{T}^{k} - \frac{1}{2} \mathbf{p}_{T}^{2} \delta^{jk}) S_{T}^{k}}{M^{2}} h_{1T}^{\perp}(x, \mathbf{p}_{T}) + \frac{\varepsilon^{jk} p_{T}^{k}}{M} h_{1}^{\perp}(x, \mathbf{p}_{T})$$

#### LI & RS generate relations also between some TMDs !

A.Efremov, P.Schweitzer, O.Teryaev and P.Z. Phys.Rev.D 80, 014021(2009)

### **PDF-TMD relations**

#### 1. UNPOLARIZED

$$f_1^a(x, \mathbf{p}_T) = -\frac{1}{\pi M^2} \frac{d}{dy} \left[ \frac{f_1^a(y)}{y} \right]_{y=\xi(x, \mathbf{p}_T^2)} \qquad \xi(x, \mathbf{p}_T^2) = x \left( 1 + \frac{\mathbf{p}_T^2}{x^2 M^2} \right)$$

*For details see:* P.Z. Phys.Rev.D **83**, 014022 (2011), **arXiv:0908.2316 [hep-ph]** A.Efremov, P.Schweitzer, O.Teryaev and P.Z. Phys.Rev.D **83**, 054025(2011) arXiv:0912.3380 [hep-ph], arXiv:1012.5296 [hep-ph]

The same relation was shortly afterwards obtained independently: U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D **81**, 036010 (2010), arXiv:0909.5650 [hep-ph]

In this talk we assume  $m \rightarrow 0$ 

### **PDF-TMD** relations

#### 2. POLARIZED

$$g_1^a(x, \mathbf{p}_T) = \frac{2x - \xi}{2} K^a(x, \mathbf{p}_T) ,$$
  

$$h_1^a(x, \mathbf{p}_T) = \frac{x}{2} K^a(x, \mathbf{p}_T) ,$$
  

$$g_{1T}^{\perp a}(x, \mathbf{p}_T) = K^a(x, \mathbf{p}_T) ,$$
  

$$h_{1L}^{\perp a}(x, \mathbf{p}_T) = -K^a(x, \mathbf{p}_T) ,$$
  

$$h_{1T}^{\perp a}(x, \mathbf{p}_T) = -\frac{1}{x} K^a(x, \mathbf{p}_T) .$$

Known  $f_{I}(x)$ ,  $g_{I}(x)$  allow us to predict some unknown TMDs

$$K^{a}(x,\mathbf{p}_{T}) = \frac{2}{\pi\xi^{3}M^{2}} \left( 2\int_{\xi}^{1} \frac{dy}{y} g_{1}^{a}(y) + 3g_{1}^{a}(\xi) - x \frac{dg_{1}^{a}(\xi)}{d\xi} \right)$$

### Numerical results:



Another model approaches to TMDs give compatible results: 1. U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D 81, 036010 (2010) 2. C.Bourrely, F.Buccellla, J.Soffer, Phys.Rev. D 83, 074008 (2011)



...corresponds to our former results on momentum distributions in the rest frame, see

PZ, Eur.Phys.J. C52, 121 (2007)

$$f_I^q(x) \to P_q(p_T)$$

Input for *f<sub>1</sub>(x)* MRST LO at *4 GeV*<sup>2</sup>



**Fig. 1.** The quark momentum distributions in the rest frame of the proton: the p and  $p_{\rm T}$  distributions for valence quarks  $P_{q,{\rm val}} = P_q - P_{\bar{q}}$  and sea quarks  $P_{\bar{q}}$  at  $Q^2 = 4 \,{\rm GeV}^2$ . Notation:  $u, \bar{u}$  is indicated by a solid line,  $d, \bar{d}$  by a dashed line and  $\bar{s}$  by a dotted line

Calculation of  $\langle p \rangle_{q,\text{val}}$  gives roughly 0.11 GeV/*c* for *u* and 0.083 GeV/*c* for *d* quarks. Since  $G_q(p)$  has rotational symmetry, the average transversal momentum can be calculated to be  $\langle p_T \rangle = \pi/4 \cdot \langle p \rangle$ .

#### Two sets of DIS data and methods of obtaining $\langle p_T \rangle$ :



### I. Leptonic data

Available methods are based on approaches in which bounds of **x** imply bounds of  $p_T$ :

Statistical models:

Covariant models:

R. S. Bhalerao, N. G. Kelkar, and B. Ram, Phys. Lett. B 476, 285 (2000).
J. Cleymans and R. L. Thews, Z. Phys. C 37, 315 (1988).
C. Bourrely, J. Soffer, and F. Buccella, Eur. Phys. J. C 23, 487 (2002); Mod. Phys. Lett. A 18, 771 (2003); Eur. Phys. J. C 41, 327 (2005); Mod. Phys. Lett. A 21, 143 (2006); Phys. Lett. B 648, 39 (2007).

J. D. Jackson, G. G. Ross, and R. G. Roberts, Phys. Lett. B **226**, 159 (1989).

P. Zavada, Phys. Rev. D 83, 014022 (2011).

U. D'Alesio, E. Leader, and F. Murgia, Phys. Rev. D 81, 036010 (2010).

And others, e.g. Barbara Pasquini...

<*p*<sub>7</sub>> **≈ 0.1** GeV/c

### II. Hadronic data

#### Analysis is based on the Gaussian fit:

$$F_{f/P}(x,p_T) = f_{f/P}(x) \frac{\exp[-p_T^2/\langle p_T^2 \rangle]}{\pi \langle p_T^2 \rangle}$$

# **x**, $p_T$ are completely uncorrelated, no $p_T$ bounds, strong $p_L$ - $p_T$ asymmetry...

P. Schweitzer, T. Teckentrup, and A. Metz, Phys. Rev. D 81, 094019 (2010).

M. Anselmino, M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia, and A. Prokudin, Phys. Rev. D **71**, 074006 (2005). J. C. Collins, A. V. Efremov, K. Goeke, S. Menzel, A. Metz, and P. Schweitzer, Phys. Rev. D **73**, 014021 (2006).

#### <*p*<sub>7</sub>> **≈ 0.6** GeV/c





# The situation is similar to $g_2(x)$ :



P.Z. Phys.Rev.D 67, 014019 (2003)

In both cases the sign is correlated with the sign of *p<sub>L</sub>* in the rest frame (in our approach)  $q^{\uparrow}(x, \mathbf{p}_{\mathbf{T}}) = \frac{1}{2}(f_1^q + g_1^q)$ 



0.15 0.18 0.22 0.30

X



| $p_T/M$ | X        |
|---------|----------|
|         | <br>0.15 |
| 0.10    | <br>0.18 |
| 0.13    | <br>0.22 |
| 0.20    | <br>0.30 |



#### Remark on the covariant approach

Drawback of the covariant QPM: only leading order. Is the calculation of evolution feasible in a covariant approach?

#### 1. Standard evolution:

 $F_2^{p,n},g_1^{p,n} \rightarrow q(x,Q_0^2), \Delta q(x,Q_0^2) \rightarrow q(x,Q^2), \Delta q(x,Q^2), g(x,Q^2)$ 

**Modification:** 
$$x = \frac{p_0 - p_L}{P_0 - P_L} \rightarrow \xi = \frac{pP}{M^2}$$
 Rest frame:  $\xi = \frac{p_0}{M}$ 

2. Covariant evolution:

 $F_2^{p,n}, g_1^{p,n} \rightarrow G_q(\xi, Q_0^2), \Delta G_q(\xi, Q_0^2) \rightarrow G_q(\xi, Q^2), \Delta G_q(\xi, Q^2), G_g(\xi, Q^2)$   $G_q = G_q^+ + G_q^ \Delta G_q = G_q^+ - G_q^-$ 

 $G_q(\xi, Q^2), \Delta G_q(\xi, Q^2) \rightarrow \text{PDFs}, \text{TMDs}, \dots$ 

### **Potential advantages**

Due to rot. sym. the number of variables does not change, but the new description is full 3D

Covariant approach could provide an effective common framework for calculation with

(polarized + unpolarized) (PDFs + TMDs)

### Summary

**1.** We discussed kinematic constraints due to Lorentz invariance and rotational symmetry.

**2.** As an illustration we have presented some TMD predictions based on the covariant QPM.

**3.** We discussed significant differences in available estimates of the intrinsic  $\langle p_T \rangle$ .

# Thank you !

### Backup slides

ROLE OF QUARKS

### Angular momentum

- Total angular momentum consists of j=l+s.
- In relativistic case *I*,*s* are not conserved separately, only *j* is conserved. So, we can have pure states of *j* (*j*<sup>2</sup>,*j<sub>z</sub>*) only, which are represented by the bispinor spherical waves:

$$\begin{split} \psi_{kjljz}(\mathbf{p}) &= \frac{\delta(p-k)}{p\sqrt{2p_0}} \begin{pmatrix} i^{-l}\sqrt{p_0+m}\,\Omega_{jljz}(\mathbf{\omega}) \\ i^{-\lambda}\sqrt{p_0-m}\,\Omega_{j\lambda j_z}(\mathbf{\omega}) \end{pmatrix}, \\ \text{where } \mathbf{\omega} &= \mathbf{p}/p, \ l = j \pm \frac{1}{2}, \ \lambda = 2j - l \ (l \ \text{defines the parity}) \ \text{and} \\ \Omega_{j,ljz}(\mathbf{\omega}) &= \begin{pmatrix} \sqrt{\frac{j+j_z}{2j}} \ Y_{ljz-1/2}(\mathbf{\omega}) \\ \sqrt{\frac{j-j_z}{2j}} \ Y_{ljz+1/2}(\mathbf{\omega}) \end{pmatrix}; \ l = j - \frac{1}{2}, \\ \Omega_{j,ljz}(\mathbf{\omega}) &= \begin{pmatrix} -\sqrt{\frac{j-j_z+1}{2j+2}} \ Y_{ljz-1/2}(\mathbf{\omega}) \\ \sqrt{\frac{j+j_z+1}{2j+2}} \ Y_{ljz+1/2}(\mathbf{\omega}) \end{pmatrix}; \ l = j + \frac{1}{2}. \end{split}$$

[P.Z. Eur.Phys.J. C52, 121 (2007)]

For 
$$j = j_z = 1/2$$
 and  $l = 0$ :  

$$Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{10} = i\sqrt{\frac{3}{4\pi}}\cos\theta, \quad Y_{11} = -i\sqrt{\frac{3}{8\pi}}\sin\theta\exp(i\varphi),$$

$$\psi_{kjlj_z}(\mathbf{p}) = \frac{\delta(p-k)}{p\sqrt{8\pi}p_0} \begin{pmatrix} \sqrt{p_0 + m}\begin{pmatrix} 1\\ 0 \end{pmatrix} \\ -\sqrt{p_0 - m}\begin{pmatrix} \cos\theta\\\sin\theta\exp(i\varphi) \end{pmatrix} \end{pmatrix}.$$

For the superposition

$$\Psi(\mathbf{p}) = \int a_k \psi_{kjlj_z}(\mathbf{p}) dk; \quad \int a_k^* a_k dk = 1$$

the average spin contribution to the total angular momentum is calculated as

$$\langle s \rangle = \int \Psi^{\dagger}(\mathbf{p}) \Sigma_z \Psi(\mathbf{p}) d^3 p; \qquad \Sigma_z = \frac{1}{2} \begin{pmatrix} \sigma_z \\ \cdot \end{pmatrix}$$

 $\sigma_z$ 

### **Spin & orbital motion**

 $\Rightarrow$ 

$$\langle s_z \rangle = \int a_p^* a_p \frac{(p_0 + m) + (p_0 - m)(\cos^2 \theta - \sin^2 \theta)}{16\pi p^2 p_0} d^3 p$$

$$= \frac{1}{2} \int a_p^* a_p \left(\frac{1}{3} + \frac{2m}{3p_0}\right) dp.$$

$$\langle l_z \rangle = \frac{1}{3} \int a_p^* a_p \left(1 - \frac{m}{p_0}\right) dp.$$
In relativistic limit:
$$m \ll p_0 \quad \Rightarrow \quad \langle s_z \rangle \rightarrow 1/6, \quad \langle l_z \rangle \rightarrow 1/3.$$

$$\dots \text{ in general: } \langle l_z \rangle = 2 \langle s_z \rangle.$$

only 1/3 of j contributes to  $\Sigma$ 

### Interplay of spin and orbital motion



#### **Spin and orbital motion from PDF's**

$$\langle s^q \rangle = \int g_1^q(x) dx.$$

$$\langle l^q \rangle = -\int h_{1T}^{\perp(1)q}(x) dx.$$

H. Avakian, A. V. Efremov, P. Schweitzer and F. Yuan Phys.Rev.D81:074035(2010).

J. She, J. Zhu and B. Q. Ma Phys.Rev.D79 054008(2009).

Our model:

$$\int g_1^q(x) dx = \frac{1}{2} \int \Delta G_q(p_0) \left( \frac{1}{3} + \frac{2m}{3p_0} \right) d^3 p.$$
$$-\int h_{1T}^{\perp(1)q}(x) dx = \frac{1}{3} \int \Delta G(p_0) \left( 1 - \frac{m}{p_0} \right) d^3 p.$$

### **Two pictures:**

1. wavefunctions (bispinor spherical waves) & operators

2. probabilistic distributions & structure functions (in our model)

$$\int g_1^q(x) dx \qquad -\int h_{1T}^{\perp(1)q}(x) dx$$
$$\frac{1}{2} \int \Delta G_q(p_0) \left(\frac{1}{3} + \frac{2m}{3p_0}\right) d^3p \quad \frac{1}{3} \int \Delta G_q(p_0) (1 - \frac{m}{p_0}) d^3p$$
$$a_p^* a_p dp \Leftrightarrow \Delta G_q(p_0) d^3p; \quad \Delta G_q(p_0) = G_q^+(p_0) - G_q^-(p_0)$$



Also in our model OAM can be identified with pretzelosity!