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First notes on azimuthal and/or spin asymmetries due to T-odd TMDs in the Drell-Yan process
(DY) and possibly (at a later stage) also semi-inclusive deeply inelastic scattering (SIDIS) (?). The
purpose is to prepare practical predictions, most practically for COMPASS meeting 26 April 2010,
on the basis of results from light-cone quark models for TMDs in nucleon [1], and pion(!) [2].
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I. INTRODUCTION

We study DY, see Fig. 1. This Figure and its caption are shamelessly borrowed from [3]. We will work in the
Collins-Soper frame (CS) which is a particular dilepton rest frame, see [3] for a nice and pedagogical review.
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FIG. 1: Amplitude for dilepton production in parton model approximation. Both diagrams have to be taken into account. The
spectator systems Xa and Xb of the two hadrons are not detected.

The kinematical variables are s = (p1 + p2)2, the dilepton invariant mass Q2 = (k1 + k2)2 with p1/2 (and k1/2)
indicating the momenta of the incoming proton and hadron h (and the outgoing lepton pair), and the rapidity

y =
1

2
ln

p1(k1 + k2)

p2(k1 + k2)
. (1)

The parton momenta x1/2 in the TMDs are fixed in terms of s, Q2 and y as follows

xa/b =

√

Q2

s
e±y , (2)

and typically the observables are presented as functions of y. Below we will have COMPASS in mind, where the
kinematics is s ≈ 400 GeV2 and Q2 = 20 GeV2.

Alternatively, one can use xF = xa − xb with xaxb = Q2/s.
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Table 9: Expected statistical errors for various asymmetries assuming two years of data
taking and a beam momentum of 190 GeV/c.

Asymmetry Dimuon mass (GeV/c2)
2 < Mµµ < 2.5 J/ψ region 4 < Mµµ < 9

δ A
cos 2φ

U
0.0020 0.0013 0.0045

δ A
sin φS
T

0.0062 0.0040 0.0142

δ A
sin(2φ+φS)
T

0.0123 0.008 0.0285

δ A
sin(2φ−φS)
T

0.0123 0.008 0.0285
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Figure 28: Theoretical predictions and expected statistical errors on the Sivers (top-left),
Boer–Mulders (top-right), sin(2φ + φS) (bottom-left) and sin(2φ − φS) (bottom-right)
asymmetries for a DY measurement π

−
p → µ

+
µ
−
X with a 190 GeV/c π

− beam in the
high-mass region 4 GeV/c

2
< Mµµ < 9 GeV/c

2. In case of the Sivers asymmetry also the
systematic error is shown (smaller error bar).
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Boer-Mulders function of the pion 
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LCWF:

invariant under boost, independent of Pµ

internal variables:

[Brodsky,  Pauli, Pinsky, ’98]
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ΨLC
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Phenomenological Light-Cone Wave Function of the Pion  
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2
⊥,i)!                       : momentum-space component              gaussian shape 

     two parameters: mq and gaussian width fitted to exp. charge radius and pion decay constant 

!                          : spin-dependent part            eigenstate of the total angular momentum operator 
                                                                           in light-front dynamics (Lz = 0, | Lz | =1)
ΨSpin(xi,�k⊥,i,λi)
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Model calculation of pion Boer-Mulders
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Burkardt, PRD66 (02)

unpolarized quarks

Chromodynamic lensing



Burkardt, PRD66 (02)

transversely pol. quark  

Chromodynamic lensing

Distortion in impact 
parameter
(related to GPD ET) 



Burkardt, PRD66 (02)

transversely pol. quark  

Chromodynamic lensing

Distortion in transverse 
momentum
(related to Boer Mulders function) 

Final-state interaction
(lensing function)



Burkardt, PRD66 (02)
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<by>=0.197 fm 

Frederico, Pace,  BP, Salme’,
PRD80 (2009)

Light-Cone CQM

Broemmel et al., 
PRL101,2008

Lattice

<by>=( 0.151 ± 0.024) fm 

Pion GPDs in impact parameter space

order terms. We take, however, the result of Ref. [12] as a
guide to estimate the L dependence of our lattice data,
fitting B!;u

T10ðt ¼ 0Þ=m! to the form c0 þ c1m
2
! þ

c2m
2
! expð%m!LÞ. This fit, represented by shaded bands

in Fig. 3, gives B!;u
T10ðt ¼ 0Þ ¼ 1:47ð18Þ GeV%1 at L ¼ 1

and m! & 440 MeV, compared to B!;u
T10ðt ¼ 0Þ ¼

1:95ð27Þ GeV%1 at L& 1:65 fm as represented by the
diamond in the lowest panel of Fig. 3. The typical correc-
tions for B!;u

T20ðt ¼ 0Þ=m! are similar. Within present sta-
tistics, we do not see a clear volume dependence of the
corresponding p-pole masses for n ¼ 1; 2.

The pion mass dependence of B!;u
Tn0ðt ¼ 0Þ=m! is shown

in Fig. 4. The darker shaded bands show fits based on the
ansatz we just described. Data points and error bands have
been shifted to L ¼ 1. For m! ¼ 140 MeV, we obtain
B!;u
T10ðt ¼ 0Þ=m! ¼ 1:54ð24Þ GeV%1 with mp ¼

0:756ð95Þ GeV and B!;u
T20ðt ¼ 0Þ=m! ¼ 0:277ð71Þ GeV%1

with mp ¼ 1:130ð265Þ GeV, where in both cases we have
set p ¼ 1:6. The errors of the forward values include the
uncertainties from finite volume effects. The light shaded
bands in Fig. 4 show fits restricted tom! < 650 MeV using
1-loop ChPT [5] plus the volume-dependent term
c2m

2
! expð%m!LÞ. We note that the ChPT extrapolation

gives larger values for B!;u
T10ðt ¼ 0Þ at the physical point

than the linear extrapolation in m2
!.

To compute the lowest two moments of the density in
Eq. (1), we further need the GFFs A!

n0ðtÞ with n ¼ 1; 2. For
A!;u
10 ðtÞ ¼ F!ðtÞ, we refer to our results in Ref. [6]. A

detailed analysis of A!;u
20 ðtÞ will be presented in Ref. [11],

and first results are given in Ref. [4]. We fit A!;u
n0 ðtÞ to a

p-pole parametrization with p ¼ 1, which provides an
excellent description of the lattice data and is consistent
with power counting for t ! %1. Fourier transforming the
parametrizations of the momentum-space GFFs, we obtain
the densities "nðb?; s?Þ. In Fig. 5, we show "n¼1ðb?; s?Þ
for up quarks in a !þ together with corresponding profile
plots for fixed bx. Compared to the unpolarized case on the
left, the right-hand side of Fig. 5 shows strong distortions
for transversely polarized quarks and thus a pronounced
spin structure. The difference between p ¼ 1:6 and p ¼ 2
for B!;u

Tn0 is negligible within errors. The negative values of
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FIG. 5 (color online). The lowest moment of the densities of
unpolarized (left) and transversely polarized (right) up quarks in
a !þ together with corresponding profile plots. The quark spin is
oriented in the transverse plane as indicated by the arrow. The
error bands in the profile plots show the uncertainties in B!;u

T10ðt ¼
0Þ=m! and the p-pole masses at mphys

! from a linear extrapola-
tion. The dashed-dotted lines show the uncertainty from a ChPT
extrapolation (light shaded band).
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FIG. 5 (color online). The lowest moment of the densities of
unpolarized (left) and transversely polarized (right) up quarks in
a !þ together with corresponding profile plots. The quark spin is
oriented in the transverse plane as indicated by the arrow. The
error bands in the profile plots show the uncertainties in B!;u

T10ðt ¼
0Þ=m! and the p-pole masses at mphys

! from a linear extrapola-
tion. The dashed-dotted lines show the uncertainty from a ChPT
extrapolation (light shaded band).
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order terms. We take, however, the result of Ref. [12] as a
guide to estimate the L dependence of our lattice data,
fitting B!;u

T10ðt ¼ 0Þ=m! to the form c0 þ c1m
2
! þ

c2m
2
! expð%m!LÞ. This fit, represented by shaded bands

in Fig. 3, gives B!;u
T10ðt ¼ 0Þ ¼ 1:47ð18Þ GeV%1 at L ¼ 1

and m! & 440 MeV, compared to B!;u
T10ðt ¼ 0Þ ¼

1:95ð27Þ GeV%1 at L& 1:65 fm as represented by the
diamond in the lowest panel of Fig. 3. The typical correc-
tions for B!;u

T20ðt ¼ 0Þ=m! are similar. Within present sta-
tistics, we do not see a clear volume dependence of the
corresponding p-pole masses for n ¼ 1; 2.

The pion mass dependence of B!;u
Tn0ðt ¼ 0Þ=m! is shown

in Fig. 4. The darker shaded bands show fits based on the
ansatz we just described. Data points and error bands have
been shifted to L ¼ 1. For m! ¼ 140 MeV, we obtain
B!;u
T10ðt ¼ 0Þ=m! ¼ 1:54ð24Þ GeV%1 with mp ¼

0:756ð95Þ GeV and B!;u
T20ðt ¼ 0Þ=m! ¼ 0:277ð71Þ GeV%1

with mp ¼ 1:130ð265Þ GeV, where in both cases we have
set p ¼ 1:6. The errors of the forward values include the
uncertainties from finite volume effects. The light shaded
bands in Fig. 4 show fits restricted tom! < 650 MeV using
1-loop ChPT [5] plus the volume-dependent term
c2m

2
! expð%m!LÞ. We note that the ChPT extrapolation

gives larger values for B!;u
T10ðt ¼ 0Þ at the physical point

than the linear extrapolation in m2
!.

To compute the lowest two moments of the density in
Eq. (1), we further need the GFFs A!

n0ðtÞ with n ¼ 1; 2. For
A!;u
10 ðtÞ ¼ F!ðtÞ, we refer to our results in Ref. [6]. A

detailed analysis of A!;u
20 ðtÞ will be presented in Ref. [11],

and first results are given in Ref. [4]. We fit A!;u
n0 ðtÞ to a

p-pole parametrization with p ¼ 1, which provides an
excellent description of the lattice data and is consistent
with power counting for t ! %1. Fourier transforming the
parametrizations of the momentum-space GFFs, we obtain
the densities "nðb?; s?Þ. In Fig. 5, we show "n¼1ðb?; s?Þ
for up quarks in a !þ together with corresponding profile
plots for fixed bx. Compared to the unpolarized case on the
left, the right-hand side of Fig. 5 shows strong distortions
for transversely polarized quarks and thus a pronounced
spin structure. The difference between p ¼ 1:6 and p ¼ 2
for B!;u

Tn0 is negligible within errors. The negative values of
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error bands in the profile plots show the uncertainties in B!;u
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0Þ=m! and the p-pole masses at mphys
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tion. The dashed-dotted lines show the uncertainty from a ChPT
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Model calculations of pion Boer-Mulders function
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Diquark spectator model and LCCQM with one gluon exchange approximation
BM funct. proportional to "s ⇒ overall normalization constant depending on the model scale 

Spectator Quark model
|k⊥h⊥

1π|/Mπf1π

mass and f1!x;k2
?" is the unpolarized quark distribution

of the proton.

III. COS2! ASYMMETRIES IN UNPOLARIZED
DRELL-YAN PROCESS

The general form of the angular differential cross
section for unpolarized !#p Drell-Yan process is

1
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d"
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1
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sin2$cos2&
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; (19)

where & is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass frame (see Fig. 4). The experimental data show large
value of ' near to 30%, which can not be explained by
perturbative QCD. Many theoretical approaches have
been proposed to interpret the experimental data, such
as high-twist effect [21,22], and factorization breaking
mechanism [23]. In Ref. [4] Boer demonstrated that un-
suppressed cos2& asymmetries can arise from a product
of two chiral-odd h?1 which depends on transverse mo-
mentum. In Ref. [18] the cos2& asymmetry in unpolar-
ized p "p ! l"lX Drell-Yan process has been estimated
from h?1 !x;k2

?" for the proton computed by quark-sca-
lar-diquark model. The maximum of ' in that case is in
the order of 30%.

In this section we give a simple estimate of cos2&
asymmetry in unpolarized !#p Drell-Yan process,

from h?1! computed by our model. The leading order
unpolarized Drell-Yan cross section expressed in the
Collins-Soper frame [24] is
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d!dx1dx2d2q?
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where Q2 $ q2 is the invariance mass square of the lepton
pair, and the vector ĥ $ q?=QT . We have used the nota-
tion

F &f1 "f1' $
Z

d2p?d2k?)2!p? % k? # q?"fa1 !x;p2
?"

( "fa1! "x;k2
?": (21)

From Eq. (20) one can give the expression for the
asymmetry coefficient ' [4]:
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Our model calculation has shown "h?1! $ h?1!. Thus in
!#p unpolarized Drell-Yan process we can assume
u-quark dominance, which means the main contribution
to asymmetry comes from "h?; "u

1! ! "x;k2
?" ( h?;u

1 !x;p2
?",

since "u in !# and u in proton are both valence quarks.
Then we have ' * 2Fu=!M!MGu". To evaluate ', we use
our model result for "h?; "u

1! and "f1!, and we adopt h?;u
1 and

f1 from Ref. [18]. Using the p? integration to eliminate
the delta function in the denominator and numerator in
Eq. (22) one arrives at
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FIG. 4. Angular definitions of unpolarized Drell-Yan process
in the lepton pair center of mass frame.
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mass and f1!x;k2
?" is the unpolarized quark distribution

of the proton.

III. COS2! ASYMMETRIES IN UNPOLARIZED
DRELL-YAN PROCESS

The general form of the angular differential cross
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where & is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass frame (see Fig. 4). The experimental data show large
value of ' near to 30%, which can not be explained by
perturbative QCD. Many theoretical approaches have
been proposed to interpret the experimental data, such
as high-twist effect [21,22], and factorization breaking
mechanism [23]. In Ref. [4] Boer demonstrated that un-
suppressed cos2& asymmetries can arise from a product
of two chiral-odd h?1 which depends on transverse mo-
mentum. In Ref. [18] the cos2& asymmetry in unpolar-
ized p "p ! l"lX Drell-Yan process has been estimated
from h?1 !x;k2

?" for the proton computed by quark-sca-
lar-diquark model. The maximum of ' in that case is in
the order of 30%.
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from h?1! computed by our model. The leading order
unpolarized Drell-Yan cross section expressed in the
Collins-Soper frame [24] is

d"!h1h2 ! l"lX"
d!dx1dx2d2q?

$ (2

3Q2

X

a; "a

#

A!y"F &f1 "f1' % B!y"

( cos2&F
$

!2ĥ ) p?ĥ ) k?"

# !p? ) k?"
h?1 "h?1
M1M2

%&

; (20)

where Q2 $ q2 is the invariance mass square of the lepton
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Our model calculation has shown "h?1! $ h?1!. Thus in
!#p unpolarized Drell-Yan process we can assume
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and agree reasonably well with each other. Because the light cone
components in Eq. (34) are already integrated out and the remain-
ing integration range is over a 2-dimensional transverse Euclidean
space, and because the gauge dependent part of the gluon prop-
agator does not contribute, it is natural to apply the Euclidean
results in Landau gauge of the Dyson–Schwinger framework. One
unique feature of Dyson–Schwinger studies of the gluon propa-
gator is that it rises like (k2)2κ−1 in the infra-red limit with a
universal coefficient κ " 0.595. This makes it infrared finite in con-
trast to the perturbative propagator. A fit to the results for the
non-perturbative gluon propagator has been given in Refs. [82,87,
88],

Z
(
p2,µ2) = p2D−1(p2,µ2)

=
(

αs(p2)

αs(µ2)

)1+2δ( c( p2

Λ2 )κ + d( p2

Λ2 )2κ

1+ c( p2

Λ2 )κ + d( p2

Λ2 )2κ

)2

, (36)

with the parameters c = 1.269, d = 2.105, and δ = − 9
44 . These fits

for the running coupling and the gluon propagator merge with
the spirit of the eikonal methods described above since closed
fermion loops (quenched approximation) were neglected. By using
the non-perturbative propagator (36), we partly reintroduce gluon
self-interactions that were originally neglected in the generalized
ladder approximation. According to Ref. [88] the fitting functions
Eqs. (35) and (36) were adjusted to Dyson–Schwinger results ob-
tained at a very large renormalization scale, the mass of the top
quark, µ2 = 170 GeV2, which defines the normalization in (36).
Since the lensing function deals with soft physics, intuitively we
prefer a much lower hadronic scale which sets the normalization,
µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we also
assume that the scale at which the gluons are exchanged is given
by the transverse gluon momentum that we integrate over. In this
way the running coupling serves as a vertex form factor that addi-
tional cuts off large gluon transverse momenta.

Our ansatz for the eikonal phase given by Dyson–Schwinger
quantities then reads,

χDS(|$zT |
)
= 2

∞∫

0

dkT kTαs
(
k2T

)
J0

(
|$zT |kT

)
Z
(
k2T ,Λ2

QCD
)
/k2T . (37)

The numerical result for this ansatz is shown in the center panel
of Fig. 2. We plot this function for various scale ΛQCD = 0 GeV,
0.2 GeV, 0.5 GeV, 0.7 GeV. Although the choice of this scale is
rather arbitrary we observe only a very mild dependence on this
scale as long as it remains soft. We further observe that the phase
doesn’t exceed a value of 4–4.5 → χmax/4 ≈ 1.15. Thus this feature
makes the application of the power series of the color function in
SU(3) reliable since χ/4 never exceeds 1.5 in the lensing function,
Eq. (30) and in turn in the calculation of the Boer–Mulders func-
tion in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the lens-
ing functions (30) for a U (1), SU(2) and SU(3) color function. We
plot the results in Fig. 3 for a color function for U (1), SU(2), SU(3).
While we observe that all lensing functions fall off at large trans-
verse distances, they are quite different in size at small distances.
However for each case, the all order calculation sums up to an
exponential of the eikonal phase where one observes oscillations
from the Bessel function J0 of the first kind. Despite these oscilla-
tions the lensing function remains negative.

6. The pion Boer–Mulders function

In this section we use the eikonal model for the lensing func-
tion together with the spectator model for the GPD Hπ

1 to present

Fig. 3. The pion Boer–Mulders function, xm2
πh⊥,(1)

1 (x) vs. x calculated by means of
the relation to the chirally-odd GPD Hπ

1 for an SU(3), SU(2), U (1) gauge theory.

predictions of the relation (5) for the first moment of the pion
Boer–Mulders function h⊥(1)

1 .
We start by fixing the model parameters in (13). We encounter

six free model parameters ms , mq , Λ, λ, gπ and n that we need to
determine by fitting to pion data. In order to do so we determine
the chiral-even GPD Fπ

1 (for definition and notation see Ref. [48])
in the spectator model,

Fπ
1

(
x,0,− $(2

T
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= g2π
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e2λ
2Λ2
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(1− x)Λ2

$D2
T + Λ̃2(x)

)2n−2 2π∫
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×
1∫

0
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z2n−3[1 − 2z − z x(1−x)m2

π−2msmq
$D2
T +Λ̃2(x)

]e− 2λ2( $D2
T +Λ̃2(x))
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[1 − 4z(1 − z)
$D2
T

$D2
T +Λ̃2(x)

cos2 ϕ]n
.

(38)

When integrated over x, the GPD reduces to the pion form factor
Fπ+

(Q 2) = −Fπ−
(Q 2). An experimental fit of the pion form fac-

tor to data is presented in Refs. [89,90], and up to Q 2 = 2.45 GeV2

is displayed by the monopole formula Ffit(Q 2) = (1 + 1.85Q 2)−1.
This procedure is expected to predict the t-dependence of the
chirally-odd GPD Hπ

1 reasonably well up to Q 2 = 2.45 GeV2. In
order to fix the x-dependence of Hπ

1 we fit the collinear limit
Fπ
1 (x,0,0) to the valence quark distribution in a pion. A parame-

terization for Fπ
1 (x) was given by GRV in Ref. [91] at a scale µ2 =

2 GeV2. Reasonable agreements of the form factor- and collinear
limit of Eq. (38) with the data fits are found for the parameters
mq = 0.834 GeV, ms = 0.632 GeV, Λ = 0.067 GeV, λ = 0.448 GeV,
n = 0.971, gπ = 3.604. Details of the fitting procedure for this and
an analogous calculation for the Sivers function will be presented
in a future publication [80].

With the predicted GPD Hπ
1 and the lensing function

I i(x, $bT ) ≡ biT /|bT |I(x, |bT |) as input we use (5) to give a pre-
diction for the valence contribution to the first kT -moment of the
pion Boer–Mulders function,

m2
πh

⊥(1)
1 (x) = 2π

∞∫

0

dbT b2T I(x,bT )
∂

∂b2T
Hπ

1
(
x,b2T

)
. (39)

Numerical results for m2
πh

⊥(1)
1 (x) are presented in Fig. 3 for a

U (1), SU(2) and SU(3) gauge theory. One observes that all re-
sults are negative which reflects the sign of the lensing function. It
was argued in Ref. [66] that a negative sign of the lensing func-
tions indicates attractive FSIs. We find that this is valid in an
Abelian perturbative model as well as our non-perturbative model

Gamberg, Schlegel
PLB685 (2010)

Beyond one-gluon exchange approx.

TMD-GPD relation + lensing function from eikonal methods
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total quark helicity Jqz

! classification of LCWFs in orbital angular momentum components

Jz = Jz
q + Lz

q

[Ji, J.P. Ma,  Yuan, 03; 
Burkardt, Ji, Yuan, 02]
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Light-Cone Wave Function of the Proton

MODEL

[B.P., Cazzaniga, Boffi, PRD78 (2008)]

! momentum-space component: spherically symmetric 

two parameters fitted to anomalous magnetic moments of proton and neutron

!spin-dependent part            eigenstate of the total angular momentum operator (S, P, D waves)
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model-dependent relation

   [She, Zhu, Ma, 2009;  Avakian, Efremov, Schweitzer, Yuan, 2010] 
first derived in LC-diquark model and bag model

valid in all quark models with spherical symmetry in the rest frame 
 [Lorce’, BP, PLB710 (2012)]

chiral even and charge even chiral odd and charge odd

no operator identity
relation at level of matrix 

elements of operators 

OAM and Pretzelosity 



Application to Observables 



�x�v = 1 �x�g = �x�sea = 0

Fixing the scale of the LCCQM

Evolve in energy until 2nd moment=1
Find !02~0.1GeV2  +"!02

We use  RGE and one first principle based assumption.
Then we set scenarios ...

�
(uv + dv)

�
µ2

0

��
n=2

= 1

�
(uv + dv)

�
Q2 = 10GeV2

��
n=2

= 0.36

Say there exists a scale at which there is no sea and no gluon, then

QCD evolution introduces gluons and sea quarks: Roberts, “The structure of the proton”

! there exists a scale at which there are no sea and gluons

! the valence quarks carry the whole momentum of the hadron

Parisi & Petronzio, Phys. Lett. B 62 (1976)
Traini et al, Nucl. Phys. A 614, 472 (1997)
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Parisi & Petronzio, Phys. Lett. B 62 (1976)
Traini et al, Nucl. Phys. A 614, 472 (1997)



The BM-Pretzelosity Asymmetry in !p Drell Yan

[Arnold, Metz, Schlegel, PRD79, (2008)]

with

Numerator

Denominator

 = proton spin angle in the CM frameφp = lepton angle in the CS frameφ
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xF = xπ − xp

π−p

Q2 = 20 GeV2

x

Results from the LCCQM
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Model dependence from f1p and f1#
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Fig. 1. The sin(φ + φS ) asymmetries for π±p↑ → µ+µ−X process at COMPASS. Solid and dashed curves are the results for π− and π+ productions, respectively.

Fig. 2. Similar to Fig. 1, but for the sin(3φ − φS ) asymmetries. The thin curves are calculated with a cut 1.0 ! qT ! 2.0 GeV.

a number of processes [37] and transversity distributions related
to the Collins asymmetry at HERMES [38]. This model is also suc-
cessful in the prediction of the dihadron production asymmetry
at COMPASS [39,40]. So it is worth trying to apply this model
to the Drell–Yan kinematics at COMPASS. Besides this, we need
the Boer–Mulders function for a pion [41,42], of which the knowl-
edge is limited, and we will use the parametrization in Ref. [41],
which was obtained in a quark spectator antiquark model. The
pion parton distributions we adopt were demonstrated [41] to give
a good description on the cos2φ asymmetries measured in the un-
polarized πN Drell–Yan process [43], where a large and increasing
asymmetry was observed in the qT region below 3 GeV, thus our
model has been checked to be reasonable in this region. Another
important feature we should remember is that this T -odd function
has a different sign in the Drell–Yan process with that in the SIDIS
process [18,20,44],

h⊥
1 |DY = −h⊥

1 |SIDIS. (9)

In Ref. [41], the Boer–Mulders function is calculated for the SIDIS
process, so we will make a sign change for our parametrization in
our Letter. However, we should be careful that due to the chiral-
odd nature of Boer–Mulders function, it always couples with an-
other chiral-odd function for being probed. This makes it very dif-
ficult to obtain the information of this function, especially its sign.
In the unpolarized Drell–Yan process, the Boer–Mulders function
couples with itself, therefore it is impossible to determine its sign.
In the SIDIS process, the Boer–Mulders function is combined with
the Collins function, the extraction [45] of which also relies on the
azimuthal asymmetry of hadron production in e+e− annihilation

process. Also we will stress that unlike many other calculations,
we do not make the ansatz that the transverse momentum depen-
dence of the TMDs has a pure Gaussian form, but just deduce it
from the model. That is, we evaluate the integration over the par-
ton transverse momenta numerically. The experiment we consider
is for COMPASS, where the kinematics we will use are [46]

√
s = 18.9 GeV, 0.1 < x1 < 1, 0.05 < x2 < 0.5,

4 ! M ! 8.5 GeV, 0 ! qT ! 4 GeV (if qT is integrated).

We will investigate the xF ,M and qT dependence of the asym-
metries. The integration range can be determined as follows.

• For the xF /M dependence, given a fixed xF /M , the range for
M/xF is determined by Eq. (4) so that xmin

1,2 < x1,2(xF ,M) <

xmax
1,2 .

• For the qT dependence, the range for M is 4 ! M ! 8.5 GeV,
and the range for xF is determined by Eq. (4) so that xmin

1,2 <

x1,2(xF ,M) < xmax
1,2 .

In Figs. 1 and 2 (thick curves), we plot the sin(φ + φS ) asymmetry
and the sin(3φ − φS ) asymmetry in the π p↑ Drell–Yan at COM-
PASS, respectively. We can clearly see from the two figures that the
asymmetries for the π−p↑ process are much larger than those for
the π+p↑ process, because that the former process is dominated
by u quark while the latter is dominated by d quark. COMPASS will
conduct a π−p↑ plan in the near future, however, we will also give
the prediction on the π+p↑ process as a supplement, and expect

Predictions from other models

Zhun Lu, B.-Q. Ma, PLB696(2011)

talk of Zhun Lu

Light-cone quark spectator model 

cut in 1.0 GeV < qT < 2.0 GeV

cut in 
1.0 GeV < qT < 2.0 GeV

π+

π−

π+

π− π−

π+
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chiral-odd ! needs Collins FF (or similar)

leads to sin(3φ-φs) modulation in AUT  

proton and deuteron data consistent with 
zero

cancelations? pretzelosity=zero? 
or just the additional suppression by two 
powers of Ph!  

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h⊥1

L g1L h⊥1L

T f⊥1T g1T h1, h⊥1T

Twist-2 TMDs

31

Pretzelosity

-0.02

0

0.02

0.04

2
 !

s
in

(3
"-
" S

)#
U
$

%+
HERMES
7.3% scale  uncertainty

PRELIMINARY

-0.1

-0.05

0

0.05 %0

-0.04

-0.02

0

0.02

0.04

10
-1

x

%-

0.4 0.6
z

0.5 1
Ph$ [GeV]

INT 12-49W, February 10th, 2012Gunar Schnell 

( )Sh3sin

UTA
!! "

chiral-odd ! needs Collins FF (or similar)

leads to sin(3φ-φs) modulation in AUT  

proton and deuteron data consistent with 
zero

cancelations? pretzelosity=zero? 
or just the additional suppression by two 
powers of Ph!  

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h⊥1

L g1L h⊥1L

T f⊥1T g1T h1, h⊥1T

Twist-2 TMDs

31

Pretzelosity

-0.02

0

0.02

0.04

2
 !

s
in

(3
"-
" S

)#
U
$

%+
HERMES
7.3% scale  uncertainty

PRELIMINARY

-0.1

-0.05

0

0.05 %0

-0.04

-0.02

0

0.02

0.04

10
-1

x

%-

0.4 0.6
z

0.5 1
Ph$ [GeV]

Pretzelosity from SIDIS

✓ leads to sin (3$-$s) modulation in AUT

✓ proton (HERMES) and deuteron (COMPASS) data
   consistent with zero

✓ pretzelosity equal to zero? 
   or just the suppression by third power of 1/Ph⊥?

Gunar Schnell, INT workshop, 2012

" experiment planned at CLAS12
    (H. Avakian at al., LOI 12-06-108)



! Polarized Drell-Yan at COMPASS with pion beam: BM#     pretzelosityproton                                                                    

Summary

complementary to SIDIS to extract information on proton pretzelosity 

new tool to learn about the transverse spin structure of quark in the pion 

! Predictions in a Light-Cone Quark model                                                                    

⊗

small asymmetry of the order of 1-2%, with larger contribution at large xF 

small model dependence from f1 of proton
larger uncertainties from f1 of pion 

effects of evolution are important and need further studies 

! Future plans: extend the analysis within LCCQM to other spin asymmetries of (un)polarized DY                                                              


