The Drell-Yan process: Theoretical aspects

> Werner Vogelsang Tübingen Univ.

> > Trento, 21/05/12

Drell-Yan arguably is theoretically best explored process in hadronic scattering:

- probe of partonic structure of hadrons: anti-quarks, valence distribution of pion, ...
- interface of QCD and QED/el.weak interactions: precision probes (e.g. W-mass at Tevatron)
- important spin phenomena
- LO is color-singlet annihilation $\,q \bar{q}
 ightarrow \gamma^{*}$
 - higher-orders under control
 - higher-order computations "easier"
- many techniques relevant for $\,gg \to H\,$

This talk: Focus on some perturbative-QCD aspects

Outline:

- Introduction: Factorized hadronic scattering
- Threshold resummation
- Drell-Yan in πN scattering
- Drell-Yan with transverse momentum
- Conclusions

Introduction: Factorized hadronic scattering

(up to power corrections $1/Q^2$)

ω_{ab}	$ \omega_{ab}^{(\text{LO})} + \frac{\alpha_s}{2\pi} \omega_{ab}^{(\text{NLO})} $	$(-)) + \left(\frac{\alpha_s}{2\pi}\right)^2 \omega_{ab}^{(\text{NNLO})} + \cdots$		
	Unpol.	Long. pol.	Trans. pol.	
NLO	Kubar et al. Altarelli, Ellis,Martinelli Harada et al.	Ratcliffe Weber Gehrmann Kamal de Florian, WV	Weber, WV WV Contogouris et al. Barone et al.	
NNLO	Hamberg, van Neerven, Matsuura Harlander, Kilgore Anastasiou, Dixon, Melnikov, Petriello Catani, Cieri, Ferrera, de Florian, Grazzini	Smith, v.Neerven, Ravindran		

Real + Virtual: IR singularities cancel

Collinear singularity → factorization into PDFs → scheme dependence

LO:

$$\omega_{q\bar{q}}^{(\mathrm{LO})} \sim \delta(1-z) \qquad z = \frac{Q^2}{\hat{s}}$$

NLO:

$$\omega_{q\bar{q}}^{(\text{NLO})} \sim \frac{\alpha_s}{2\pi} C_F \left[4(1+z^2) \left(\frac{\ln(1-z)}{1-z}\right)_+ - 2\frac{1+z^2}{1-z} \ln z + \left(\frac{2}{3}\pi^2 - 8\right) \delta(1-z) + 2P_{qq}(z) \ln \frac{Q^2}{\mu^2} \right] \right]$$

$$\int_0^1 dz \, f(z) \, \left(\frac{\ln(1-z)}{1-z}\right)_+ \equiv \int_0^1 dz \, (f(z) - f(1)) \, \frac{\ln(1-z)}{1-z}$$

• DGLAP evolution:

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \begin{pmatrix} q(x,\mu^{2}) \\ g(x,\mu^{2}) \end{pmatrix} = \int_{x}^{1} \frac{\mathrm{d}z}{z} \begin{pmatrix} \mathcal{P}_{qq} & \mathcal{P}_{qg} \\ \mathcal{P}_{gq} & \mathcal{P}_{gg} \end{pmatrix} \begin{pmatrix} q \\ g \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \end{pmatrix}$$

$$\mathcal{P}_{ij} = \frac{\alpha_{s}}{2\pi} \quad \mathcal{P}_{ij}^{\mathrm{LO}} + \begin{pmatrix} \alpha_{s} \\ 2\pi \end{pmatrix}^{2} \quad \mathcal{P}_{ij}^{\mathrm{NLO}} + \begin{pmatrix} \alpha_{s} \\ 2\pi \end{pmatrix}^{3} \quad \mathcal{P}_{ij}^{\mathrm{NNLO}} + \dots$$

$$Ahmed, Ross$$

$$Altarelli, Parisi, \dots$$

$$Petronzio$$

$$Antoniadis, Kounnas,$$

$$Lacaze$$

$$Mertig, van Neerven$$

$$WV$$

$$Kumano et al.$$

$$Koike et al.$$

$$WV$$

Anastasiou et al.

√⁷ Stirling/Whalley

$$x = \frac{2p_L}{\sqrt{S}}$$

 $Q^3 - \frac{d\sigma}{d\sigma}$

(M.Aicher)

Threshold resummation

 $\omega^{(
m LO)}_{qar q} \propto \, \delta(1-z)$

• NLO correction:

$$z \to 1$$
:
 $\omega_{q\bar{q}}^{(\mathrm{NLO})} \propto \alpha_s \left(\frac{\log(1-z)}{1-z}\right)_+ + \dots$

• higher orders:

"threshold logarithms"

• for $z \rightarrow 1$ real radiation inhibited

• logs emphasized by parton distributions :

$$d\sigma \sim \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{q\bar{q}} \left(\frac{\tau}{z}\right) \omega_{q\bar{q}}(z) \qquad \tau = \frac{Q^2}{S}$$

$$z = 1 \text{ relevant,}$$
in particular as $\tau \rightarrow 1$

• logs more relevant at lower hadronic energies

- large logs may spoil perturbative series, unless taken into account to all orders
 - = (Threshold) Resummation !
- particularly relevant for (lower-energy) fixed-target
- work began in the '80s with Drell-Yan process
 Sterman; Catani, Trentadue
 various new techniques: Laenen, Sterman, WV
 Forte, Ridolfi; Becher, Neubert
 van Neerven, Smith, Ravindran
 Laenen, Magnea

1 LO $\alpha_{\mathbf{s}} \, \mathbf{L^2}$ NLO $\alpha_{\mathbf{s}} \mathbf{L}$ $\alpha_{\mathbf{s}}$ $+ \dots$ Resummation $\alpha_{\mathbf{s}}^{\mathbf{2}} \, \mathbf{L}^{\mathbf{3}}$ $\alpha_{\mathbf{s}}^{\mathbf{2}} \mathbf{L}^{\mathbf{4}}$ $\alpha_{\mathbf{s}}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \qquad \alpha_{\mathbf{s}}^{\mathbf{2}} \mathbf{L}$ NNLO $+ \dots$ $lpha_{\mathbf{s}}^{\mathbf{3}} \, \mathbf{L}^{\mathbf{5}}$ $\alpha_{\mathbf{s}}^{\mathbf{3}} \, \mathbf{L}^{\mathbf{6}}$ $\alpha_{\mathbf{s}}^{\mathbf{4}} \, \mathbf{L}^{\mathbf{7}}$ $\alpha_{\mathbf{s}}^{\mathbf{4}} \, \mathbf{L}^{\mathbf{8}}$ • $\alpha_{\mathbf{s}}^{\mathbf{k}} \, \mathbf{L^{2k-1}}$ $\alpha_{\mathbf{s}}^{\mathbf{k}} \, \mathbf{L^{2k}}$ NLL LL

Fixed order

Resummation relies on:

- factorization of QCD matrix elements in soft limit
- and of phase space when integral transform is taken:

$$\int \int \int z_{1} \int z_{1} = \frac{\delta \left(1 - z - \sum_{i=1}^{n} z_{i}\right)}{2\pi i \int_{C} dN e^{N\left(1 - z - \sum_{i=1}^{n} z_{i}\right)}}$$

$$\int \int z_{n} z_{i} = \frac{2E_{i}}{\sqrt{\hat{s}}}$$

$$\overline{MS} \text{ scheme}$$

$$\tilde{\omega}_{q\bar{q}}^{(\text{res})}(N) \propto \exp\left[2\int_{0}^{1} dy \, \frac{y^{N}-1}{1-y} \int_{\mu^{2}}^{Q^{2}(1-y)^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A_{q}\left(\alpha_{s}(k_{\perp}^{2})\right) + \dots\right]$$

$$A_q(\alpha_s) = C_F \left\{ \frac{\alpha_s}{\pi} + \left(\frac{\alpha_s}{\pi}\right)^2 \left\lfloor \frac{C_A}{2} \left(\frac{67}{18} - \zeta(2)\right) - \frac{5}{9} T_R n_f \right\rfloor + \dots \right\}$$

logs enhance cross section !

LL:

$$\tilde{\omega}_{q\bar{q}}^{(\text{res})}(N) \propto \exp\left[+\frac{2C_F}{\pi}\alpha_s \ln^2 N + \dots\right]$$

NLL:

Catani, Mangano, Nason, Trentadue

$$\tilde{\omega}_{q\bar{q}}^{(\text{res})}(N) \propto \exp\left\{2\ln\bar{N} h^{(1)}(\lambda) + 2h^{(2)}\left(\lambda, \frac{Q^2}{\mu^2}\right)\right\}$$

$$L \qquad \text{NLL}$$

$$\lambda = \alpha_s(\mu^2) b_0 \log(Ne^{\gamma_E})$$

$$h^{(1)}(\lambda) = \frac{A_q^{(1)}}{2\pi b_0 \lambda} \left[2\lambda + (1 - 2\lambda) \ln(1 - 2\lambda) \right] \qquad h^{(2)} = \dots$$

Note,

$$\tau = \frac{Q^2}{S}$$

$$\int_0^1 d\tau \, \tau^{N-1} \, \frac{d\sigma}{dQ^2} \propto \sum_{ab} \left(\int_0^1 dx_a \, x_a^N \, f_a \right) \, \left(\int_0^1 dx_b \, x_b^N \, f_b \right) \, \tilde{\omega}_{ab}(N)$$

Inverse transform:

$$\sigma^{\rm res} = \frac{1}{2\pi i} \int_{C-i\infty}^{C+i\infty} dN \, \tau^{-N} \, \tilde{\sigma}^{\rm res}(N)$$

"Minimal prescription"

Catani, Mangano, Nason, Trentadue

Drell-Yan process in πN scattering

M. Aicher, A.Schäfer, WV

• Drell-Yan process has been main source of information on pion structure:

E615, NA10

$$d\sigma = \sum_{ab} \int dx_a \int dx_b f_a^{\pi}(x_a, \mu) f_b(x_b, \mu) d\hat{\sigma}_{ab}(x_a P_a, x_b P_b, Q, \alpha_s(\mu), \mu)$$

Kinematics such that data mostly probe valence region:
 ~200 GeV pion beam on fixed target

• LO extraction of u_v from E615 data: $\sqrt{S} = 21.75 \, \text{GeV}$

(Compass kinematics)

Aicher, Schäfer, WV (earlier studies: Shimizu, Sterman, WV, Yokoya)

Fit	$2\langle xv^{\pi}\rangle$	α	β	γ	K	χ^2 (no. of points)
1	0.55	0.15 ± 0.04	1.75 ± 0.04	89.4	0.999 ± 0.011	82.8 (70)
2	0.60	0.44 ± 0.07	1.93 ± 0.03	25.5	0.968 ± 0.011	80.9 (70)
3	0.65	0.70 ± 0.07	2.03 ± 0.06	13.8	0.919 ± 0.009	80.1 (70)
4	0.7	1.06 ± 0.05	2.12 ± 0.06	6.7	0.868 ± 0.009	81.0 (70)

0.5 Q = 4 GeVfit 3 SMRS 0.4 GRS [8] 0.3 xv^{π} 0.2 $\sim (1-x)^{2.34}$ 0.1 0.0 ⊾ 0.0 0.2 0.4 0.8 1.0 0.6 х

 $xv^{\pi}(x, Q_0^2) = N_v x^{\alpha}(1-x)^{\beta}(1+\gamma x^{\delta})$

 $\mathbf{x}_{\mathbf{F}}$

Drell-Yan with transverse momentum

(see talk by V. Barone)

- more refined aspects of QCD hard scattering: TMD factorization
- (transverse) spin phenomena / nucleon TMD structure Sivers, Boer-Mulders, non-universality

 $\frac{d\sigma}{d\Omega d^4 q} = \frac{\alpha^2}{2(2\pi)^4 Q^2 s^2} \{ W_T (1 + \cos^2\theta) + W_L (1 - \cos^2\theta) + W_\Delta \sin^2\theta \cos^2\theta + W_{\Delta\Delta} \sin^2\theta \cos^2\theta \}$

Lam, Tung; Collins

 $1 - \lambda - 2\nu = 0$ Lam-Tung relation

Boer, WV; Berger, Qiu, Rodriguez-Pedraza

- these logs are related (although not identical) to the threshold logs
- all-order resummation for spin-av. cross section understood for long time

Collins, Soper, Sterman; ...

$$\int \vec{k}_{T_{n}} \vec{k}_{T_{n}} \qquad \delta^{2} \left(\vec{q}_{T} + \sum_{i} \vec{k}_{T_{i}} \right) = \frac{1}{(2\pi)^{2}} \int d^{2}b \, \mathrm{e}^{-i\vec{b}\cdot\left(\vec{q}_{T} + \sum_{i} \vec{k}_{T_{i}}\right)} \\ \frac{\log^{2k-1}\left(\frac{Q^{2}}{q_{T}^{2}}\right)}{q_{T}^{2}} \quad \leftrightarrow \quad \log^{2k}(bQ)$$

$$\hat{\sigma}^{(\text{resum})}(b) \propto \exp\left[2\int_{0}^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \left(J_0(bk_{\perp}) - 1\right) \left\{A_q(\alpha_s(k_{\perp}^2)\log\frac{Q^2}{k_{\perp}^2} + \dots\right\}\right]$$

(Sudakov exponent)

logs suppress cross section !

1

Kulesza, Sterman, WV

 great strides forward recently on connection to scale evolution of TMDs and resummation formalism for single-spin observables

Aybat,Collins,Qiu,Rogers Kang,Xiao,Yuan Aybat,Prokudin,Rogers Anselmino,Boglione,Melis

• can be formulated to give evolution of TMDs in terms of

$$\frac{d\sigma}{dq_{\perp}^2} \sim \sigma_0 \int d^2 k_{\perp,1} \int d^2 k_{\perp,2} F(x_1, k_{\perp,1}, Q) \,\bar{F}(x_2, k_{\perp,2}, Q) \,\delta^{(2)}(\vec{k}_{\perp,1} + \vec{k}_{\perp,2} - \vec{q}_{\perp})$$

Mert Aybat,Rogers, Collins,Qiu Kang,Xiao,Yuan evolved TMD in b-space:

$$\begin{split} F(x, b, Q) &= F(x, b, Q_0) \times \\ &\times \exp \left\{ \ln \frac{Q}{Q_0} \tilde{K}(b_*; \mu_b) + \int_{Q_0}^Q \frac{d\mu'}{\mu'} \Big[\gamma_F(g(\mu'); 1) - \ln \frac{Q}{\mu'} \gamma_K(g(\mu')) \Big] \right. \\ &+ \int_{Q_0}^{\mu_b} \frac{d\mu'}{\mu'} \ln \frac{Q}{Q_0} \gamma_K(g(\mu')) + \underbrace{g_K(b_T) \ln \frac{Q}{Q_0}}_{\text{non-pert.}} \\ & \mu_b \sim 1/b_* \qquad b_* = \frac{b}{\sqrt{1 + b^2/b_{\max}^2}} \end{split}$$

Reason for non-perturbative piece:

$$\hat{\sigma}^{(\text{resum})}(b) \propto \exp\left[\frac{2C_F}{\pi} \int_0^{Q^2} \frac{dk_\perp^2}{k_\perp^2} \left(J_0(bk_\perp) - 1\right) \left\{\alpha_s(k_\perp^2) \log\frac{Q^2}{k_\perp^2} + \dots\right\}\right]$$

Logarithms are contained in

$$\exp\left[-\frac{2C_F}{\pi} \int_{1/b^2}^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \left\{\alpha_s(k_{\perp}^2) \log \frac{Q^2}{k_{\perp}^2} + \dots\right\}\right]$$

\rightarrow need prescription for dealing with large-b

$$\int d^2 b e^{-i\vec{b}\cdot\vec{q}_T} [\ldots]$$
e.g. $b^* \equiv \frac{b}{\sqrt{1+b^2/b_{\max}^2}}$ or

Contribution from very low $k_{\!\scriptscriptstyle \perp}$

- suggests Gaussian non-pert. contribution with logarithmic Q dependence
- expected to be universal (unpol. <-> Sivers)
- "global" fits

Davies, Webber, Stirling; Landry et al., Ladinsky, Yuan; Qiu, Zhang; Konychev, Nadolsky

• values of g1,g2 depend on treatment of large-b region !

initial phenomenology very encouraging

Aybat, Prokudin, Rogers

$$A_L = rac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}
eq 0$$

$$A_L^{e^-} \sim \frac{\Delta \bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 - \Delta d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2}{\bar{u}(x_1) d(x_2) (1 - \cos \theta)^2 + d(x_1) \bar{u}(x_2) (1 + \cos \theta)^2}$$

- NLO for polarized case: Nadolsky, Yuan de Florian, WV Gehrmann, von Arx
- new analytical NLO calculation of

 $q\bar{q}' \to \ell^{\pm} X , qg \to \ell^{\pm} X$

Ringer, WV

e

 $\bar{\nu}_e$

• structure:
$$1 - v = \frac{p_T^{\ell}}{\sqrt{s}} e^{-\hat{\eta}} \qquad vw = \frac{p_T^{\ell}}{\sqrt{s}} e^{+\hat{\eta}}$$

$$\frac{d\hat{\sigma}^{\text{NLO}}}{dvdw} = \frac{\alpha_s}{2\pi} \left\{ \frac{f_{\text{LO}}(v)}{(s - M_W^2)^2 + \Gamma^2 M_W^2} \left[A \left(\frac{\ln(1 - w)}{1 - w} \right)_+ + B(v) \frac{1}{(1 - w)_+} + C(v) \delta(1 - w) \right] \right\}$$

$$+ \dots + \frac{\ln\left(\frac{(ws - M_W^2)^2 + \Gamma^2 M_W^2}{M_W^4 + \Gamma^2 M_W^2}\right)}{(ws - M_W^2)^2 + \Gamma^2 M_W^2} + \dots \bigg\}$$

• should help to understand behavior around $p_T^\ell \sim M_W/2$ <-> interplay with resummation (Tevatron!) • "joint" resummation: threshold and q_T logs can be resummed simultaneously

Laenen, Sterman, WV

$$\frac{d\sigma^{\mathsf{res}}}{dQ^2 dq_T^2} \propto \sum_q \int_{\mathcal{C}} dN \left(\frac{Q^2}{S}\right)^{-N} \int d^2 \mathbf{b} \ \mathrm{e}^{-i\,\tilde{\mathbf{q}}_T \cdot \tilde{\mathbf{b}}} \ f_q^N(Q) \ f_{\bar{q}}^N(Q)$$
$$\times \exp\left\{2\int_0^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} A(\alpha_s(k_{\perp}^2)) \left[J_0(\mathbf{b} \ k_{\perp}) \ K_0\left(\frac{2Nk_{\perp}}{Q}\right) + \ln\left(\frac{\bar{N}k_{\perp}}{Q}\right)\right]\right\}$$

- recover
 - -- threshold logs for $\,N
 ightarrow\infty,\,\,b\,$ small
 - -- q_{T} logs for $b o \infty, \ N$ small
- $q_{\mathsf{T}}\text{-}integrated$ cross section recovers threshold-resummed cross section

Conclusions

- understanding of higher-order QCD corrections in Drell-Yan cross section very advanced: NLO, NNLO, resummations to NLL, NNLL
- QCD corrections important, in particular in fixed-target regime: threshold logs
- recent progress toward TMD evolution
- many opportunities for fixed-target DY experiments: TMDs
 - pion structure
 - nuclear pdfs?
 - test of higher orders in pert. Theory