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★ Factorization Theorem for Drell-Yan at small qT (using SCET): 
First matching step: separation of modes 
❖ Light-cone divergencies
❖ Definition of TMDPDFs on-the-light-cone (vs Collins)

• Properties of the newly defined TMDPDF
‣ Free from Rapidity Divergencies
‣ Universal
‣ From TMDPDF to integrated PDF

★ Factorization Theorem for Drell-Yan at small qT:
Second matching step: OPE of the TMDPDF onto PDFs
❖ Q2 resummation without Collins-Soper evolution equation
❖ Evolution: Anomalous Dimension at 2-loop and 3-loop
❖ Resummed TMDPDF and its evolution

★ Factorization Theorem for Drell-Yan at small qT:
Final Factorization Theorem: Resummed Hadronic Tensor
★ Conclusions and Outlook

Outline

2



What Is SCET?
• Soft-Collinear Effective Theory is an effective theory of QCD
• SCET describes interactions between low energy (u)soft and collinear fields (very 
energetic in one light-cone direction) 
• Expand the lagrangian in powers of
• SCET captures all the IR physics of QCD: matching is possible
• SCET is useful to prove factorization theorems and resum large logs

� ⇠ p?/pcol ⌧ 1

n-co!inear
-co!inear

ultraso$ (SCET-I)
so$ (SCET-II)

pµn = Q(1,�2,�)

pµn̄ = Q(�2, 1,�)

pµus = Q(�2,�2,�2)

pµs = Q(�,�,�)

n̄

n2 = n̄2 = 0 , n · n̄ = 2

nµ = (1, 0, 0, 1)

n̄µ = (1, 0, 0,�1)

pµ = n̄ · pn
µ

2
+ n · pn̄

µ

2
+ pµ?

⌘ pµ+ + pµ� + pµ? ⌘ (p+, p�, p?)

[Bauer, Fleming, Pirjol, Stewart ’01,
BPS ’02]

➡ We use SCET to factorize Drell-Yan at small qT and define the TMDPDFs.
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DY Factorization at Small qT:

General Overview
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QCD current SCET-qT current

• (T stands for Transverse Wilson line: a! matrix elements are gauge invariant!! [MGE, Idilbi, 
Scimemi ’11])
• Collinear, anti-collinear and soft fields decouple:
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DY Factorization at Small qT:

QCD Matching onto SCET-qT



Light-Cone Gauge:
n̄ ·An = 0
Wn = 1

• By the inclusion of the T-Wilson line we make the TMDPDF gauge invariant in regular 
and singular gauges.
• In [MGE, Idilbi, Scimemi ’11] SCET formalism was extended to include singular gauges.
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is Gauge Invariant!!
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DY Factorization at Small qT:

Gauge Invariance: T-Wilson Line



• [Ji, Ma, Yuan ’05] introduced this soft function with dependence ONLY on the 
transverse component [contrary to Collins’ earlier works] “by hand”. We derive it!!

y ⇠ 1

Q
(1, 1,

1

�
)The photon is hard:

• This result includes subleading contributions (in powers of 1/Q2): Taylor Expansion.

� ⇠ qT
Q
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DY Factorization at Small qT:

Taylor Expansion



• Taking the soft limit of the contribution of the collinear Wilson line:
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• Because there is a double counting issue... So we need to subtract the soft function!!

DY Factorization at Small qT:

Double Counting
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• This is NOT the final factorization theorem
• Up to now we have just separated the modes, not the long and short distance physics

• Now we stop the derivation of the factorization theorem to define the TMDPDF 
and show few of its properties.
• Later we will continue with the final steps towards the DY factorization theorem.

• Let’s focus on one issue: rapidity divergencies
• It will lead us to the definition of the TMDPDF

DY Factorization at Small qT: 1st Matching Step

Factorization of Modes

We are not done yet!!



• Collinear and soft Wilson lines give mixed UV/rapidity divergencies (RD):

Light-cone (Rapidity) Divergencies
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• RD do NOT cancel even when we combine virtual and real diagrams.
• For PDF we have similar light-cone singularities, but they cancel between virtual and real.
• The RD coming from the soft function is double the one coming from the collinear (this 
is due to the double counting issue...).

Now...
• In QCD, the hadronic tensor M (partonic) is free from mixed divergencies.
• And actually it has even no rapidity divergencies



Operator Definition of the TMDPDF

No soft function in the factorization theorem!! (Agreement with [Collins ’11])

• With these definition we get (in impact parameter space):
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• Seven definitions of TMDPDF “in the market”:
‣ Collins ’82: just co!inear (off-the-LC)
‣ Ji, Ma, Yuan ’05: co!inear with subtraction of complete so$ function (off-the-LC)
‣ Cherednikov, Stefanis ’08: co!inear with subtraction of complete so$ function (LC gauge)
‣ Mantry, Petriello ’10: fu!y unintegrated co!inear matrix element
‣ Becher, Neubert ’11: there is no definition of TMDPDF
‣ Collins ’11: co!inear with subtraction of square root of so$ function (off-the-LC “strange”)
‣ Chiu, Jain, Neill, Rothstein ’12: co!inear matrix element (Rapidity Regulator)

• In order to cancel the mixed divergencies we define the TMDPDF as:
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-Regulator

Relation between regulators in propagators and Wilson lines

Free from Rapidity Divergencies

[Chiu, Fuhrer, Hoang, 
Kelley, Manohar ’09]

i(p/+ k/)

(p+ k)2 + i�� �! 1

k� ± i��
, �� =

��

p+

�

• But we choose a different path: stay on-the-light-cone and use another regulator
• This regulator does not distinguish between IR and LC divergencies 
• A! the properties of the TMDPDF are regulator-independent, of course!!

• Collinear and soft matrix elements have un-regularized divergencies.
• Old idea by Collins and Soper: go off-the-light-cone.

12



Results at One Loop (Virtual)

Free from mixed divergencies!!

• Subtracting the square root of the soft function to the collinear:
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Results at One Loop (Real)

The real part is independent of ∆-regulator!!

• Same story for reals: subtracting the square root of the soft function to the collinear, the 
rapidity divergencies cancel.
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Universality of the TMDPDF
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• Are the TMDPDFs for DIS and DY kinematics the same?
• Universality is needed to maintain the predictive power of perturbative QCD.
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• We have different Wilson lines for different kinematics.

• Taking n-collinear and soft limits we get the following Wilson lines:
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Universality of the Soft Function
• Example: soft function for DY and DIS kinematics (virtual and real contributions)
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• The soft function is universal!!



Universality of the Collinear
• For the naive collinear we get something similar:

• It turns out that both naive collinear and soft matrix elements are universal 
(then also the pure collinear, as expected)

So the TMDPDF is UNIVERSAL!!

• Interestingly enough this result has never been established explicitly before.
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From TMDPDF to PDF
• Can we recover the PDF from the TMDPDF by simple integration?
• Up to now this turned out to be elusive: [Ji, Ma, Yuan ’04], [Cherednikov, Stefanis ’08-’11]

• Taking the TMDPDF calculated in pure Dim. Reg. and integrating it:

• We just need to regulate the TMDPDF and the PDF in the same way to get it.
• Even including the soft function in the TMDPDF we still can recover the PDF

18



• The TMDPDF has perturbative content when qT is perturbative.
• We can do an OPE of the TMDPDF onto the PDFs in impact parameter space, 
integrating out the intermediate scale qT. Second matching step!!

• Properties of the coefficients Cf/j :
‣ Independent of the IR regulator (as any matching coefficient!!)
‣ It is supposed to live at the intermediate scale qT. All logs should be cancelled by one 
choice for the intermediate scale (like at threshold).
➡ BUT: it has a subtle Q2-dependence

• Accidentally, ln(Q2/µ2) can be eliminated by choosing µ, but NOT at higher orders.
• Logs cannot be combined in one single log, like at threshold: Resummation is needed!!

LT = ln
µ2b2

4e�2�E

DY Factorization at Small qT: 2nd Matching Step

OPE of TMDPDF onto PDFs
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• From the definition of the TMDPDF:

Q2-Resummation (I)

• Using the ∆-regulator, Lorentz invariance and dimensional analysis:

• Since the TMDPDF (Wilson coefficients and PDFs) is free from rapidity 
divergencies to all orders in perturbation theory:

This is analogous to Collins-Soper evolution equation!!
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• The Q2-factor is extracted for each TMDPDF individually.
• We do not need Collins-Soper evolution equation to resum the logs of Q2.
• We know cusp AD at 3-loops, so we know D at 2-loops!!

Q2-Resummation (II):
“Linearity”

• The last equation implies that the naive collinear and the soft are linear in their last 
arguments, so we get the linearity in the ln(Q2/µ2):

• Applying RGE to the hadronic tensor we get:

Independent 
of Q2!!

Independent 
of Q2!!
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Evolution: Anomalous Dimension

• A and B are known up to three loops!!
• We have by free the AD of the TMDPDF at 3-loops!!
• Collins’ AD can only be calculated at 1-loop, since there is no relation with the AD of 
the hard matching coefficient.

• Applying the RGE to M we get the AD of the TMDPDF:
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Resummed TMDPDF on-the-LC!!

• We need to set a cutoff in b to avoid the Landau pole and separate perturbative from non-
perturbative (NP) contributions. 
• Match the TMDPDF onto PDFs for large kT (small b).
• Use a NP model for small kT (large b), for example BLNY.
• Running in µ and exponentiation of logs of Q2. No Collins-Soper!!
• There are no un-physical or extra parameters like the rapidity of CS!!
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Evolution of the TMDPDF

• Once one makes an ANSATZ over the values of zetas and relate them to Qs, Collins’ 
evolution is the same as ours.
• The evolution of our TMDPDF is done entirely on-the-LC with just the hard probe Q.
• We do not need to evolve with Collins-Soper in any un-physical parameter like zeta.
• The evolution has a perturbative part and a non-perturbative part, because the NP model is 
scale-dependent.
• Our formalism is much more simple: on-the-light-cone!!
• Compatible with factorization theorem: we can resum logs for DY on-the-LC and 
without Collins-Soper, just through the “linearity” argument.
• We can go to higher orders in perturbation theory (3-loop AD by free!!).
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• Finally, we get the factorization theorem for DY at low qT:

ln
⇤QCD

qT

ln
qT
Q

Running of H
and

Q2-factor

DGLAP evolution

• Short and long distance physics are finally separated (scales)
• We do not need Collins-Soper evolution equation to resum logs of Q2.
• The resummed logs are the following:

DY Factorization at Small qT: Final Result

Resummed Hadronic Tensor



• We have derived the factorization theorem for DY at low qT.

• We have defined the TMDPDF on-the-LC with the inclusion of the soft function 

(square root) in it.

• Its properties: free from rapidity divergencies, we can recover the integrated PDF, 

universal, gauge invariant.

• Its evolution is done only in terms of the hard probe Q.

• We know its AD at 3-loops based on the factorization theorem.

• Going off-the-LC has no special meaning, it is just a regulator (not Collins’ way).

• We do not need Collins-Soper evolution equation (there are no rapidity logs). 

Instead we use the “linearity” argument.

• Generalization to other TMD quantities is straightforward: spin-dependent 

quantities (Sivers,...), gluon TMDPDF, etc

Conclusions and Outlook
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Back up slides
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Collins’ TMDPDF (I)
• The collinear part is kept on-the-LC, while the soft subtraction has a complicated 
structure with 3 soft functions: one on-the-LC and 2 off-the-LC.

• It can be rewritten as:

This is our TMDPDF Depends on rapidity cutoff
Gives the Collins-Soper evolution

• Collins’ TMDPDF has un-cancelled rapidity divergencies that come form the 2nd factor
• He uses them to resum the logs of Q2 by Collins-Soper evolution equation.
• The ansatz for zetas has no meaning for individual TMDPDF (far off-the-LC!!). But 
when combined both, they cancel and get the Q2 of the hadronic tensor. This facto 
motivates the choice for zetas.
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Collins’ TMDPDF (II)

Two different limits for yn
to recover the LC!!

• Collins’ way of going off.the-LC is “strange”.
• The parameter that parametrizes the “off-the-light-cones” should take two different 
limits at the same time in order to come back to the light-cone.
• Once he combines two resummed TMDPDFs into the hadronic tensor, the zetas cancel. 
Then one thinks to make an ansatz over their value for each individual TMDPDF.

• If yn is taken to be 0, then we are far off-the-light-cone!!
• The way of going off-the-light-cone of, for instance [Ji, Ma, Yuan ’03], is different: just 
one limit of some parameter is necessary to come back to the light-cone.

• Collins takes a counter-term for the TMDPDF that includes rapidity divergencies, and 
this is why his AD depends on yn:
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Collins’ TMDPDF vs Ours

• Ours is much more simple than Collins’ formalism.
• Compatible with factorization theorem: we can resum logs for DY without Collins-
Soper.
• We can go to higher orders in perturbation theory.
• Out TMDPDF can be calculated with any regulator, even going off-the-light-cone (ala Ji, 
Ma, Yuan ’05, for instance)
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