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What Is SCET?

* Soft-Collinear Effective Theory is an eftfective theory of QCD

* SCET describes interactions between low energy (u)soft and collinear fields (very
energetic in one light-cone direction)

* Expand the lagrangian in powers of A ~ p | /peor < 1

* SCET captures all the IR physics of QCD: matching is possible

* SCET is useful to prove factorization theorems and resum large logs
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= We use SCET to factorize Drell-Yan at small qr and define the TMDPDFs.
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DY Factorization at Small qr:
GGeneral Overview
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DY Factorization at Small qr:

QCD Matching onto SCET-qr
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* (T'stands for Transverse Wilson line: all matrix elements are gauge invariant!! | M GE, 1dilb:,
Scimemi 11}

* Collinear, anti-collinear and soft fields decouple:
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DY Factorization at Small qr:
(Gauge Invariance: T-Wilson Line

* By the inclusion of the T-Wilson line we make the TMDPDF gauge invariant in regular
and singular gauges.
® In [MGE, Idilbi, Scimemi 'r1} SCET formalism was extended to include singular gauges.

Light-Cone Gauge: B 0 S .
A, =0 T, (x) = Pexp {zg/ dTlJ_’AnJ_(CE+,OO_,fJ_—I—lJ_T):|
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DY Factorization at Small qr:
Taylor Expansion

{M = H(Q?/u?) / d*ye Y J,(y) Ja(y) S (y)J

® This result includes subleading contributions (in powers of 1/QQ2): Taylor Expansion.

. _ 1 1
The photon is hard: Y ~ @(1’ 1, X)
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M = H(Q2/[L2)/ d4ye_iq'yE7n(0+,y_,§l) Jﬂ(y+10_agL)S(O+10_a§l)

® [Ji, Ma, Yuan o5} introduced this soft function with dependence ONLY on the
transverse component {contrary to Collins’ earlier works} “by hand”. We derive it!!
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DY Factorization at Small qr:

Double Counting

s )
M = H(Q2/ﬂ2)/ d4y e—iq-y Jn(0+ay_a g_l_) Jﬁ(y+a0_a§L) S(O+10_3§J_)
\_ /

* Taking the soft limit of the contribution of the collinear Wilson line:
n
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* Because there is a double counting issue... So we need to subtract the soft function!!
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DY Factorization at Small qr: 1st Matching Step
Factorization of Modes
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We are not done yet!!

* This is NOT the final factorization theorem
* Up to now we have just separated the modes, not the long and short distance physics

* Now we stop the derivation of the factorization theorem to define the TMDPDF
and show few of its properties.
* Later we will continue with the final steps towards the DY factorization theorem.

* Let’s focus on one issue: rapidity divergencies
* It will lead us to the definition of the TMDPDF



Light-cone (Rapidity) Divergencies

* Collinear and soft Wilson lines give mixed UV/rapidity divergencies (RD):
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* RD do NOT cancel even when we combine virtual and real diagrams.
* For PDF we have similar light-cone singularities, but they cancel between virtual and real.
* The RD coming from the soft function is double the one coming from the collinear (this

is due to the double counting issue...).

Now...

* In QCD, the hadronic tensor M (partonic) is free from mixed divergencies.

* And actually it has even no rapidity divergencies

I0



Operator Definition of the TMDPDF

* In order to cancel the mixed divergencies we define the TMDPDF as:

: - 1 d?"_dzf"_]_ 1=+ =T j (O+ r=, T ) '
— — —i(gr zpT —T L -kpy) N ’ 1L
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* With these definition we get (in impact parameter space):
M = H(Qz/ﬂz) ﬁ‘f/P(xla b; Q27 ﬂ’) Ff/}_’(x% b; Qza lu’)
No soft function in the factorization theorem!! (Agreement with )

* Seven definitions of TMDPDF “in the market”:
» Collins ’82: just collinear (off-the-LC)
» Ji, Ma, Yuan ’05: collinear with subtraction of complete soft function (off-the-LC)
» Cherednikov, Stefanis '08: collinear with subtraction of complete soft function (LC gauge)
» Mantry, Petriello ’10: fully unintegrated collinear matrix element.
» Becher, Neubert ’11: there is no definition of TMDPDF
» Collins ’11: collinear with subtraction of square root of soft function (off-the-LC “strange”)
» Chiu, Jain, Neill, Rothstein ’12: collinear matrix element (Rapidity Regulator)
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Free from Rapidity Divergencies

* Collinear and soft matrix elements have un-regularized divergencies.

* Old idea by Collins and Soper: go oft-the-light-cone.

* But we choose a different path: stay on-the-light-cone and use another regulator
* This regulator does not distinguish between IR and LC divergencies
* All the properties of the TMDPDEF are regulator-independent, of course!!

d-Regulator
ek 1 A
(p+ k)% +iA~ k= id— pt

Relation between regulators in propagators and Wilson lines
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Results at One Loop (Virtual)
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* Subtracting the square root of the soft function to the collinear:

a.sCF 1 1 3 ;1,2
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Free from mixed divergencies!!
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Results at One Loop (Real)
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* Same story for reals: subtracting the square root of the soft function to the collinear, the
rapidity divergencies cancel.

. 20,Cr 1 2x &
Ff{/p1 = 2r)2—% &2 (1—¢)(1—2x)+ A—2). +6(1 —x)ln—-

The real part is independent of A-regulator!!
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Universality of the TMDPDF

* Are the TMDPDFs for DIS and DY kinematics the same?
* Universality is needed to maintain the predictive power of perturbative QCD.

Pn

Pn

Pn

* Taking n-collinear and soft limits we get the following Wilson lines:

Wp(z) = Pexp

~

Sr(x) = Pexp

—ig/ dsn - Ap(x + 7_7,5)] W, (z) = Pexp
] 0

Y TR -
L 0

e e have different Wilson lines for different kinematics.
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Universality of the Soft Function

e Example: soft function for DY and DIS kinematics (virtual and real contributions)
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¢ The soft function 1s universal!!
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Universality of the Collinear

* For the naive collinear we get something similar:

FU TU asC "
[]n’lDIS — _"’1DY T 27I‘F 5(1 - $)5(2)(knT) 7"2}

nl It

) ) .C B}
{JT‘,DIS _ J,;;’IDY _ 8 F6(1 . x)5(2) (kT) 7]_2}

e It turns out that both naive collinear and soft matrix elements are universal
(then also the pure collinear, as expected)

[ TP NS

* Interestingly enough this result has never been established explicitly before.
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From TMDPDF to PDFE

* Can we recover the PDF from the TMDPDF by simple integration?
* Up to now this turned out to be elusive: {Ji, Ma, Yuan 'o4l, {Cherednikov, Stefanis '08-"11}

* Taking the TMDPDF calculated in pure Dim. Reg. and integrating it:
M%/dz_%ET F}J/P(xa kr; Q% 1) =

a,Cp 1 1 /3 1 1 1 /3 p
(l-z)|—+— =4+ )— - —(=+In"
2m (1-2) [e%v N EUV (2 N nQ2> EfR  €IR <2 " Q2

e [ & 2Er F (e, i @) =

asCF Q2 3 1 1 1 1
1 — 2)n- _ 250 —-a)| (— - —) —s01 - _
2m { [5( %) o *Paa 25(1 x)] (5UV EIR) o1 =2) (S%JV 51211)}

_. aC 1 1
pe /dz_zng Ff/p (@, kr; Q2 1) = 6(1 — 2) + ———Pyq (— =

27!' EUV €IR

* We just need to regulate the TMDPDF and the PDF in the same way to get it.
* Even including the soft function in the TMDPDF we still can recover the PDF
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DY Factorization at Small qr: 2nd Matching Step

OPE of TMDPDF onto PDFs

* The TMDPDF has perturbative content when qr is perturbative.
* We can do an OPE of the TMDPDF onto the PDFs in impact parameter space,
integrating out the intermediate scale qr. Second matching step!!

.
Ff/P z,0;Q% p) = ) _ / —Cf/g 5 0,Q%, 1) fi/p(a’s 1) + O (Agopb)®)
i=a9 )

. Propert1es of the coefhicients Cgj:
» Independent of the IR regulator (as any matching coefficient!!)
» It is supposed to live at the intermediate scale qr. All logs should be cancelled by one
choice for the intermediate scale (like at threshold).
= BUT: it has a subtle Q>-dependence

-~ aSCF
Cy/q(z,0;Q%, 1) =8(1 — z) + [—Py/qLr + (1 — ) L uPb?
27T LT = In
—4(1 —z) ( L7 — §LT + In #—LT + 12)]

* Accidentally, In(Q2/p2) can be eliminated by choosing p, but NOT at higher orders.
* Logs cannot be combined in one single log, like at threshold: Resummation is needed!!
19



(Q2-Resummation (I)

¢ From the definition of the TMDPDF:
lnﬁ‘f/p — lnjn == %lng

* Using the A-regulator, Lorentz invariance and dimensional analysis:

x o A
InJ,, = Rp (:1:; as,LT,lnF — ln@)

676~ A2 )

02 = anzﬂz

* Since the TMDPDF (Wilson coeflicients and PDFs) is free from rapidity
divergencies to all orders in perturbation theory:

InS = Rg (as,LT,ln

dlIlFf/p —

dinA Y

This 1s analogous to Collins-Soper evolution equation!!
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(Q2>-Resummation (I1):
“Linearity”

* The last equation implies that the naive collinear and the soft are linear in their last
arguments, so we get the linearity in the In(Qz/p2):

-

InFf/p = InF¥ , — D(b; u)ln—

Independent /

of Q2!

Independent
of Q2!

* The QQ>-factor is extracted for each TMDPDF individually:.
® We do not need Collins-Soper evolution equation to resum the logs of Q-.

®* We know cusp AD at 3-loops, SO W€ know D at 2'IOOPS!!
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Evolution: Anomalous Dimension

* Applying the RGE to M we get the AD of the TMDPDF:
M = H(Q?/u?) Ff/P(xla b; Q%, 1) Ff/ﬁ(xz, b; Q%, 1)

dinM 9

— —_ = Q
dn T v = Alew)in g + Bla)
Ff/P (:E,b; Qzauf) = €Xp {/ Tif’)'n (as(ﬂ)aln%) } Ff/P (:L',b; Qz’ﬂ'i)
I

(
1 1 /o2 67 2 5 Q?
7"2—_57”__52(?) {[(36—12)0 _ENf] CFI“;T?

13 961 11 72 65 ™ 3 .
" (ZC(?’) T16x27 48" ) CaCr (ﬁ " m) At (Z 16 3«3)) CF}
5 J

* A and B are known up to three loops!!

* We have by free the AD of the TMDPDF at 3-loops!!

* Collins’ AD can only be calculated at 1-loop, since there is no relation with the AD of
the hard matching coefhicient.
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Resummed TMDPDF on-the-LC!

N

N

Ff/P (IZI b; Q y U = Q z / f/J b a“b") fj/P(x,;“b*)

J=4q.9

AN

”~

Qz fu:Q dy/ [ ( , 2
X exp § —D (0%, pp-) In—- + — |V | as(i'); In—
{ ( ) - T () u'?

1y = 2% /b b*(b) = b/+/1+b2/b2,,,

* We need to set a cutoff in b to avoid the Landau pole and separate perturbative from non-
perturbative (NP) contributions.

* Match the TMDPDF onto PDFs for large kt (small b).

* Use a NP model for small kt (large b), for example BLNY.

* Running in p and exponentiation of logs of Q2. No Collins-Soper!!

® There are no un-physical or extra parameters like the rapidity of CS!!

~

Order Accuracy ~ amLF Yq YK Cn D
LL n+1<k<2n (a;!) | tree tree tree :
NLL (LO) n <k <2n (a?) loop tree (1-loop
NNLL (NLO) n—1<k<2n (a;) | 2-loop (1-loop)) (2-loop )
<

NNNLL (NNLO) | n—2<k < 2n (a?) A-loop 2-loop 3-loop
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Evolution of the TMDPDF

Fr/p(z,b;Q%, 1 = Qf) = Fy/p(2, 5, Q7 , pi = Qi)

(,0;Cr, 7,05 = Q) = Coums(xab; CFiy i

[R’(b, uzﬂn

VAS:X;
V CFi

@
Q2

=Q;

!

wi=Qf gy i
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Hi

pr=Q 7y d {
i’)’n (as(/")

«f
i=Q:

\_

Q2
#/2

= Qi)

—YF (as(

'
\_

GF, f
f1'°

/)

y, y

> eXP {

ln—))j exp {gK (b)ln% }

b)l
\gK( )In .

* Once one makes an ANSATZ over the values of zetas and relate them to Qs, Collins’
evolution is the same as ours.
* The evolution of our TMDPDF is done entirely on-the-LC with just the hard probe Q.

* We do not need to evolve with Collins-Soper in any un-physical parameter like zeta.

* The evolution has a perturbative part and a non-perturbative part, because the NP model is
scale-dependent.
* Our formalism is much more simple: on-the-light-cone!!
* Compatible with factorization theorem: we can resum logs for DY on-the-LC and
without Collins-Soper, just through the “linearity” argument.
* We can go to higher orders in perturbation theory (3-loop AD by free!!).
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DY Factorization at Small qr: Final Result
Resummed Hadronic Tensor

* Finally, we get the factorization theorem for DY at low qr:

M = /d?bL =k / dm/ & Zef D Y@/P(x to) S /P(zs“b)@prszQ03

1=9,9 3'=q,9
/ 2
{H(QQ/Q"’) exp { /Q % vﬂ}}xp{ 2D(b", o )lnffb }Cﬁ"}g(E i) Of)y (Vi)

* Short and long distance physics are finally separated (scales)
* We do not need Collins-Soper evolution equation to resum logs of Q2.
* The resummed logs are the following;

Q H Running of H
qT
[ In = and
. . Q>-factor
qr Cy/s (Cryy)
4+ DGLAP In Agop DGLAP evolution

dT

Agep fise (f5/p)
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Conclusions and Outlook

* We have derived the factorization theorem for DY at low qr.

* We have defined the TMDPDF on-the-L.C with the inclusion of the soft function
(square root) in it.

* [ts properties: free from rapidity divergencies, we can recover the integrated PDF,
universal, gauge invariant.

* Its evolution is done only in terms of the hard probe Q.

* We know its AD at 3-loops based on the factorization theorem.

* Going off-the-L.C has no special meaning, it is just a regulator (not Collins’ way).

* We do not need Collins-Soper evolution equation (there are no rapidity logs).
Instead we use the “linearity” argument.

* Generalization to other TMD quantities is straightforward: spin-dependent

quantities (Sivers,...), gluon TMDPDF, etc
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Matching with QCD

v &SC - A A 9 7T2
Mgep = QWF5(1 — 2)6(1 — 2)6(gL) [QInQ@ - San—Qj ~ 7]
v 2 /. 2 asCF 2) / — 2 Il ,uQ
Mgcpr = H(Q"/17) o 5(1 —z)6(1 — 2)6@(q.) [% + = <3 + QIn@)
- A ° 2 7 272
2 K 2 M
2/ 2y _ asCp | ,LL_2 = Q,u_2 = T2
HQ"/p") =1+ 5 [ 31HQ2 In oE 8+_6
Mogr = 25F 0(1—z)(1— )i+5(1— ) (1 — )i+5(1— ) i
7 I A A (O
2T 1 1 QZ

+4(1 — 2)

+20(1 —2)0(1 — = In ]:M"“
T=oyy g +200 ~ =) gz | = Moo
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Collins’ TMDPDF (1)

* The collinear part is kept on-the-LC, while the soft subtraction has a complicated
structure with 3 soft functions: one on-the-LC and 2 off-the-LC.

S(b; +00, Y )
; +OO, _OO) g(ba Yns _OO)

Fs/p(z,b;¢a, ) = F375™(z, b; “)\/S(b

¢ It can be rewritten as:

-

~

Funsub (.’B, b, p’) S b +00, yn CF,'n = (p+)2e—2yn

~ P
Fr)p(@,b;Cay pt) =|—2L

~

fﬁ)

\/S b; +00, _OO) S b Yn,> — CF,’FL — @—)262%1
~— Y \
This is our TMDPDF Depends on rapidity cutoff

Gives the Collins-Soper evolution

* Collins’ TMDPDF has un-cancelled rapidity divergencies that come form the 2nd factor
* He uses them to resum the logs of Q2 by Collins-Soper evolution equation.

* The ansatz for zetas has no meaning for individual TMDPDF (far off-the-LC!!). But
when combined both, they cancel and get the Q2 of the hadronic tensor. This facto
motivates the choice for zetas.
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Collins’ TMDPDF (I1)

* Collins’ way of going off.the-L.C is “strange”.
* The parameter that parametrizes the “oftf-the-light-cones” should take two different

limits at the same time in order to come back to the light-cone.
® Once he combines two resummed TMDPDFs into the hadronic tensor, the zetas cancel.
Then one thinks to make an ansatz over their value for each individual TMDPDE.

ny = (1,—e™*,0.) Two different limits for y,.
ng = (—ezy", 1,0,) to recover the LC!!

* Collins takes a counter-term for the TMDPDF that includes rapidity divergencies, and
this is why his AD depends on yx:

. C 2
Yok = = |:6—1—4ln ‘,u ” }

* If y, is taken to be o, then we are far off-the-light-cone!!
* The way of going off-the-light-cone of, for instance , is different: just
one limit of some parameter is necessary to come back to the light-cone.
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Collins’ TMDPDF vs Ours

A
-’ -
Fr p(x,b;Crf,puf) = Z / _Cf/a = b5 Gy = Py s fhs zﬂb*) Fi/p (@5 - )
j=q,g" "
B
~ = = C
X €xp {K(b ; ko~ ) In 10 / ﬁ, vF | as(1); lncjgf p X f/P(x b; Cr,f,CRy0)
" i —Hp* J

® Ours is much more simple than Collins’ formalism.

* Compatible with factorization theorem: we can resum logs for DY without Collins-
Soper.

* We can go to higher orders in perturbation theory:

® Out TMDPDF can be calculated with any regulator, even going off-the-light-cone (ala Ji,
Ma, Yuan ’o3, for instance)
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