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Classification by Outcome

1. Elastic scattering:
projectile and target stay in their g.s.

2. Inelastic scattering:
projectile or target left in excited state

3. Transfer reaction:
1 or more nucleons moved to the other nucleus

4. Fragmentation/Breakup/Knockout:
3 or more nuclei/nucleons in the final state

5. Charge Exchange:
A is constant but Z (charge) varies, e.g. by pion exchange

6. Multistep Processes:
intermediate steps can be any of the above
(‘virtual’ rather than ‘real’)

Ian Thompson Reactions Theory I
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7. Deep inelastic collisions:
Highly excited states produced

8. Fusion:
Nuclei stick together

9. Fusion-evaporation:
fusion followed by particle-evaporation and/or gamma
emission

10. Fusion-fission:
fusion followed by fission

The first 6 processes are Direct Reactions (DI)
The last 3 processes give a Compound Nucleus (CN).

Ian Thompson Reactions Theory I
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Compound and Direct Reactions

So when two nuclei collide there are 2 types of reactions:

1. Nuclei can coalesce to form highly excited Compound
nucleus (CN) that lives for relatively long time.
Long lifetime sufficient for excitation energy to be shared by
all nucleons. If sufficient energy localised on one or more
nucleons (usually neutrons) they can escape and CN decays.
Independence hypothesis: CN lives long enough that it loses
its memory of how it was formed. So probability of various
decay modes independent of entrance channel.

2. Nuclei make ‘glancing’ contact and separate immediately, said
to undergo Direct reactions(DI).
Projectile may lose some energy, or have one or more nucleons
transferred to or from it.

Ian Thompson Reactions Theory I



Outline
Overview of Nuclear Reactions

Elastic Cross Sections
Types of direct reactions

Location of reactions:

CN reactions at small impact parameter,

DI reactions at surface & large impact parameter.

CN reaction involves the whole nucleus.

DI reaction usually occurs on the surface of the nucleus. This leads
to diffraction effects.

Usually both DI and CN may contribute to the same reaction.

Duration of reactions:

A typical nucleon orbits within a nucleus with a period of ∼ 10−22

sec. [as K.E. ∼ 20 MeV].

If reaction complete within this time scale or less then no time for
distribution of projectile energy around target ⇒ DI reaction
occurred. CN reactions require � 10−22 sec.
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Angular distributions:

In DI reactions differential cross section strongly forward peaked as
projectile continues to move in general forward direction.

Differential cross sections for CN reactions do not vary much with
angle (not complete isotropy as still slight dependence on direction
of incident beam).
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Types of direct reactions:

Can identify various types of DI processes that can occur in
reactions of interest:

1. Elastic scattering: A(a, a)A with internal states unchanged.
Zero Q-value.

2. Inelastic scattering: A(a, a′)A∗ or A(a, a∗)A∗.
Projectile a gives up some of its energy to excite target
nucleus A. If nucleus a also complex nucleus, it can also be
excited.

[If energy resolution in detection of a not small enough to
resolve g.s. of target from low-lying excited states then cross
section will be sum of elastic and inelastic components. This
is called quasi-elastic scattering].
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3. Breakup reactions: Usually referring to breakup of projectile
a into two or more fragments. This may be elastic breakup or
inelastic breakup depending on whether target remains in
ground state.

4. Transfer reactions:
Stripping: transfer from projectile.
Pickup: transfer to projectile.

5. Charge exchange reactions: mass numbers remain the
same. Can be elastic or inelastic.
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Some terminology

Reaction channels:

In nuclear reaction, each possible combination of nuclei is called a
partition.

Each partition further distinguished by state of excitation of each
nucleus and each such pair of states is known as a reaction
channel.

The initial partition, a + A (both in their ground states) is known
as the incident, or entrance channel. The various possible
outcomes are the possible exit channels.

In a particular reaction, if not enough energy for a particular exit
channel then it is said to be closed.
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Model Calculations

Now for some Theory!

In quantum mechanics, models start with a Hamiltonian H:

Ĥ = T + V (1)

= kinetic energy + potential energy

Then solve a Schrödinger equation (SE) for total energy E :

ĤΨ = EΨ (2)

Boundary conditions are made for Ψ according to the reaction.
Predictions are based on probabilities |Ψ|2.
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Elastic Scattering from Spherical Potentials

Non-relativistic, 2-body formalism of Schrödinger equation (SE).
Look at 2-body system in potential V (r)

r = (r1 − r2)

R = (m1r1 + m2r2)/(m1 + m2)

The time-indendent Schrödinger equation is

ĤΨ = EΨ (3)

The Hamiltonian for the system is

Ĥ = − ~2

2m1
∇r1 −

~2

2m2
∇r2 + V (r)

= − ~2

2M
∇R −

~2

2m
∇r + V (r) (4)

[ m = m1m2/(m1 + m2) and M = m1 + m2 ]
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Thus can look for separable solutions of the form

Ψ(R, r) = φ(R)ψ(r) (5)

Substituting for Ψ back in SE (3) gives LHS function of R and
RHS function of r. Thus both equal to common constant, Ecm.
Hence

− ~2

2M
∇2

R φ(R) = Ecm φ(R) (6)

and (
− ~2

2m
∇2

r + V (r)

)
ψ(r) = Erel ψ(r) (7)

where Erel = E − Ecm.
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In scattering, if m1 is projectile incident on stationary target m2

then

Ecm =
m1

m1 + m2
E

Erel =
m2

m1 + m2
E

Solution to (6) is simple: φ(R) = A e iK·R which is plane wave.
Thus c.o.m. moves with constant momentum ~K and does not
change after scattering. (Note, Ecm = ~2K/2M).

The real physics is in Eq.(7).
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Spherical Potentials: ψ(r) from V (r)

r = 0 Beam direction +z

Incoming plane wave exp(ikz)

Outgoing spherical waves exp(ikr)/r

If incident beam ∼ 1 cm wide, this is 1013 fm = 1012 × nuclear
size).

Thus beam can be represented by plane wave e ik·r

Ian Thompson Reactions Theory I
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As |r| → ∞ (i.e. moving away radially from scattering centre),

ψ(r) → N

(
e ik·r + f (θ, ϕ)

e ikr

r

)
(8)

where k is defined as Erel = ~2k2/2m. Take N = 1.

In QM, flux (probability current density) is given by

J = Re

[
ψ∗
(
− i~

m
∇r

)
ψ

]
For incident flux, ψinc = e ik·r and

Jinc = Re

[
e−ik·r

(
− i~

m
∇r

)
e ik·r

]
=

~k

m
. (9)
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Cross Section

For scattered flux ψscat = f (θ, ϕ) e ikr

r and hence we obtain

Jscat = Jinc
|f (θ, ϕ)|2

r2
r̂ (10)

Define the differential cross-section (in units of area) as

The number of particles scattered into unit solid angle
per unit time, per unit incident flux, per target point,

so
dσ

dΩ
= |f (θ, ϕ)|2. (11)
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What does f (θ, ϕ) look like?

We know what the solution must look like asymptotically (outside
potential):

ψ(r) → N

(
e ik·r + f (θ, ϕ)

e ikr

r

)
(12)

For V (r) a central potential, expand partial wave solutions as

ψ(r) =
∑
`

u`(r)

kr
Y`0(θ) (13)

for all radii. Choose z-axis along incident beam, so e ik·r = e ikz .

The partial-wave radial Schrödinger equation is

d2u`
dr2

+

[
k2 − 2m

~2
V (r)− `(`+ 1)

r2

]
u` = 0 (14)
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Asymptotic Solutions

Choose V (r) = 0 for r > r0. Beyond r0 get free solution

u
′′
` +

[
k2 − `(`+ 1)

r2

]
u` = 0 (15)

Free solution is related to Coulomb functions

r > r0 : u` = A` F`(kr) + B` G`(kr) (16)

↑ ↑
kr j`(kr) −kr n`(kr)

(regular) (irregular)

r →∞ : → sin(kr−`π/2) cos(kr−`π/2)

Ian Thompson Reactions Theory I
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Phase Shifts

As r →∞

u` → A` sin(kr − `π/2) + B` cos(kr − `π/2)

= C` sin(kr − `π/2 + δ`) (17)

where δ` is known as the phase shift, so tan δ` = B`/A` here.

If V = 0 then solution must be valid everywhere, even at origin
where it has to be regular. Thus B` = 0.

So, asymptotically (long way from scattering centre):

For V = 0 u` = A` sin(kr − `π/2)

and for V 6= 0 u` = C` sin(kr − `π/2 + δ`) (18)

Thus, switching scattering potential ‘on’ shifts the phase of the
wave function at large distances from the scattering centre.

Ian Thompson Reactions Theory I
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Scattering amplitudes from Phase Shifts

Now substituting for u` from Eq.(18) back into Eq.(13) for ψ(r),
and after some angular momentum algebra, we obtain a scattering
wave function which, when equated with the required asymptotic
form of Eq.(12) gives

f (θ) =
1

k

∑
`

(2`+ 1) T` P`(cos θ) (19)

where T` = e iδ` sin δ` =
1

2i
(S` − 1) . (20)

T` is the partial wave T -matrix.
S` is the partial-wave S-matrix.
They are connected to the T-matrix (see later).

There is no dependence on ϕ because of central potentials.
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Properties of the S-matrix S`:

The S-matrix element is a complex number S` = e2iδ`

1. For purely diffractive (real) potentials |S`| = 1.
This is called unitarity, and is the conservation of flux.
δ` is usually positive for attractive potentials.

2. For absorptive (complex) potentials, |S`| ≤ 1.
The total absorption=fusion cross section is

σA =
π

k

∑
`

(2`+ 1)(1− |S`|2) (21)
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`-dependence of the S-matrix S`:

1. The ` value (partial wave)
where Re(S`) ∼ 0.5 is the
grazing ` value.

2. Partial wave ` related to
impact parameter b
in semiclassical limit:
` = k b

Typical dependence of S` on ` for
scattering from an absorptive optical
potential:

0 10 20 30
partial wave

-0.2

0.0

0.2

0.4

0.6

0.8
Real part
Imaginary part

Absorption when |S`|2 < 1 in the
interior.
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Resonances:

Occur when two particles trapped together (eg for time τ).

1. Give energy peaks in cross sections with fwhm Γ ∼ ~/τ .

2. Phase shifts typically rise rapidly through π/2 (90◦) as

δres(E ) = arctan
(

Γ/2
Er−E

)
+ δbg for peak at energy Er .

3. Cross section peak σ(E ) = 4π
k2 (2L+1) Γ2/4

(E−Er )2+Γ2/4
+ σbg
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Free Green’s function G0(E )

Can write the Schrödinger equation as

(E − H) ψ = 0 or (E − H0) ψ = V ψ (22)

where H = H0 + V . Thus

ψ = (E − H0)−1 V ψ = G0(E )V ψ (23)

G0(E ) is the Green’s operator.

Eq.(23) is not general solution for ψ as can add on solution of
homogeneous equation: the plane wave χ present when V = 0.

(E − H0) χ = 0 (24)
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Lipmann-Schwinger equation

General solution of Eq.(22) is therefore

ψ = χ + G0(E )V ψ (25)

This is iterative

ψ = χ + G0 V χ + G0 V G0 V χ + .... (26)

Eq.(25) can be written in integral form as the
Lipmann-Schwinger equation

ψ(r) = χ(r) +

∫
dr ′ G (r, r ′)V (r ′)ψ(r ′) (27)

where G (r, r ′) is the Green’s function.

Ian Thompson Reactions Theory I
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Integral expression for the Scattering Amplitude

The χ(r) = e ik·r = incident plane wave,

and we use ψ
(+)
k (r) for the scattering wave function.

(i.e. incident momentum k and (+) for outgoing waves solution).

Comparing Eq.(27) with required asymptotic form for ψ we see
that integral term must tend to

f (θ)
e ikr

r
as |r| → ∞ . (28)

Thus, using properties of Green’s function, with k′ at angle θ,

f (θ) = − m

2π~2

∫
dr e−ik

′·r V (r)ψ
(+)
k (r) . (29)
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Transition matrix element

In Dirac (bra-ket) notation we write this

f (θ) = − m

2π~2
〈 k′ | V | ψ(+)

k 〉 (30)

= − m

2π~2
T (k′, k) . (31)

T (k′, k) is known as the Transition matrix element.
So the angular cross section is

dσ

dΩ
=

m2

4π2~4
|T (k′, k)|2. (32)
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