Nuclear Astrophysics: Lecture 1

Carla Fröhlich North Carolina State University cfrohli@ncsu.edu

2017 School on Exotic Beams

Argonne National Lab

Lecture plan

- Lecture 1
 - Solar system abundances
 - A tiny little bit of BBN
 - Hydrostatic nuclear burning
 - Thermonuclear reaction rates
- Lecture 2
 - Explosive nuclear burning
 - Heavy element synthesis
 - Spectroscopy and metal-poor stars

Origin of elements

Astrophysical sites: Stellar evolution of low-mass and massive stars AGB stars (main s-process) core He-burning of massive stars (weak s-process) Supernovae Core-collapse supernovae Core-collapse supernovae Neutrino-driven winds in SNe? NS mergers X-ray bursts

Origin of elements

Big Bang Nucleosynthesis (BBN)

- After t ~ 180 s nuclear reactions begin to occur in earnest.
- There are essentially just 11 reactions.
- The most important 7 are:

```
n+p \Rightarrow D+\gammaD+p \Rightarrow {}^{3}He+\gammaD+D \Rightarrow {}^{3}He+nD+D \Rightarrow {}^{3}H+p{}^{3}H+p \Leftrightarrow {}^{3}He+nD+{}^{3}H \Rightarrow {}^{4}He+nD+{}^{3}H \Rightarrow {}^{4}He+nD+{}^{3}He \Rightarrow {}^{4}He+p
```

The other 4 reactions that occur are:

⁴ He+³ H ⇒ ⁷ Li+γ ⁴ He+³ He ⇒ ⁷ Li+γ ⁷ Be+n⇒⁷ Li+p ⁷ Li+n⇒2⁴ He

Big Bang Nucleosynthesis (BBN)

- After t ~ 15 minutes, BBN is over
- What is produced are lots of leftover free protons, ⁴He and trace amounts of D, ³H + ³He, and ⁷Li + ⁷Be.
- essentially every neutron ended up in ⁴He.
- The first stars were born with this composition!

Origin of elements

Stars (structure and evolution)

Not to scale!

H-burning

- Typical temperature: 10⁷ K
- Net reaction: 4 p \rightarrow ⁴He
 - <u>Fuel</u>: hydrogen
 - Main <u>product</u>: helium
 - Bottle neck: $p + p \rightarrow d + e^+ + v_e$ (Q-value: 0.42 MeV)
 - Lower mass stars: pp-chains
 - Higher mass stars: CNO cycle
- Duration:
 12 billion (our Sun) to 10 million (25M_{sun} star)

H-burning

pp-chain

He-burning

- Typical conditions:
 - Temperature: (1-2) 10⁸ K
 - Density: a few 10² 10⁴ g/cm³
- Net reaction: ⁴He (2α , γ) ¹²C
 - <u>Fuel</u>: helium
 - Main <u>products</u>: carbon, oxygen
 - ⁴He + ⁴He $\leftarrow \rightarrow$ ⁸Be + γ ⁸Be + ⁴He $\leftarrow \rightarrow$ ¹²C + γ
 - And ${}^{12}C + {}^{4}He \rightarrow {}^{16}O + \gamma$
 - Difficulty: lifetime of ⁸Be ~ 10⁻¹⁶ s
 → Hoyle state (resonance in ¹²C at E=7.68 MeV)
 - Other <u>products</u>: ^{21,22}Ne, ^{25,26}Mg, ³⁶S, ³⁷Cl, ⁴⁰K, ⁴⁰Ar
 - ¹⁴N (α,γ) ¹⁸F (e⁺,ν) ¹⁸O (α,γ) ²²Ne (α,n) ²⁵Mg

He-burning

Ekström+2010

Low-mass stars

- End their life after He-burning
- Eg the Sun

If WD is in a binary system → type Ia supernova

Stellar lifetimes

Time

C-burning

- Typical conditions:
 - Temperature: (6-8) 10⁸ K
 - Density: 10⁵ g/cm³
- Net reaction: ${}^{12}C + {}^{12}C$
 - <u>Fuel</u>: carbon
 - Main products: neon, magnesium, oxygen
 - ${}^{12}C + {}^{12}C \rightarrow \alpha + {}^{20}Ne$ (Q=4.62 MeV) ${}^{12}C + {}^{12}C \rightarrow p + {}^{23}Na$ (Q=2.24 MeV)
 - Other reactions: ${}^{23}Na + p \rightarrow \alpha + {}^{20}Ne$ ${}^{20}Ne + \alpha \rightarrow {}^{24}Mg$
 - ${}^{12}C + \alpha \rightarrow {}^{16}O + \gamma$ (Q=4.73 MeV)

Neutrino-losses

• At temperatures above $\sim 10^9$ K: pair-production

$$\gamma \leftrightarrow e^+ + e^- \leftrightarrow v_e + \bar{v}_e$$

Luminosity of photons and neutrinos

Ne-burning

- Typical conditions:
 - Temperature: (1-2) 10⁹ K
 - Density: 10⁶ g/cm³
- Reactions:
 - <u>Fuel</u>: neon
 - Main products: oxygen, silicon
 - ²⁰Ne (γ,α) ¹⁶O
 - Other reactions:

```
<sup>20</sup>Ne (\alpha, \gamma) <sup>24</sup>Mg (\alpha, \gamma) <sup>28</sup>Si (\alpha, \gamma) <sup>32</sup>S

<sup>21</sup>Ne (\alpha, n) <sup>24</sup>Mg (n, \gamma) <sup>25</sup>Mg (\alpha, n) <sup>28</sup>Si

<sup>23</sup>Na (\alpha, p) <sup>25</sup>Mg (\alpha, n) <sup>28</sup>Si

<sup>25</sup>Mg(p, \gamma) <sup>25</sup>Al

<sup>23</sup>Na (p, \alpha) <sup>20</sup>Ne
```

O-burning

- Typical conditions:
 - Temperature: (1.5-2.2) 10⁹ K
 - Density: 10⁷ g/cm³
- Reaction:
 - <u>Fuel</u>: oxygen
 - Main <u>products</u>: silicon

•
$${}^{16}O + {}^{16}O \rightarrow p + {}^{31}P$$
 (Q=7.676 MeV)
 ${}^{16}O + {}^{16}O \rightarrow \alpha + {}^{28}Si$ (Q=9.593 MeV)
 ${}^{16}O + {}^{16}O \rightarrow n + {}^{31}S$ (Q=1.459 MeV)

C-, Ne-, O-burning reactions (details)

(a) basic energy generation ${}^{12}C({}^{12}C,\alpha){}^{20}Ne {}^{12}C({}^{12}C,p){}^{23}Na$ ${}^{23}Na(p,\alpha){}^{20}Ne {}^{23}Na(p,\gamma){}^{24}Mg {}^{12}C(\alpha,\gamma){}^{16}O$	(a) basic energy generation ${}^{16}O({}^{16}O.\alpha){}^{28}Si - {}^{16}O({}^{12}O.p){}^{31}P - {}^{16}O({}^{16}O.n){}^{31}S(e^+\nu){}^{31}P$ ${}^{31}P(n,\alpha){}^{28}Si(\alpha,\alpha){}^{32}S$
(b) fluxes > $10^{-2} \times (a)$ ${}^{20}\text{Ne}(\alpha, \gamma)^{24}\text{Mg} = {}^{23}\text{Na}(\alpha, p)^{26}\text{Mg}(p, \gamma)^{27}\text{Al}$ ${}^{20}\text{Ne}(n, \gamma)^{21}\text{Ne}(p, \gamma)^{22}\text{Na} (e^+\nu)^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}(n, \gamma)^{26}\text{M}$ ${}^{21}\text{Ne}(\alpha, n)^{24}\text{Mg} = {}^{22}\text{Ne}(p, \gamma)^{23}\text{Na} = {}^{25}\text{Mg}(p, \gamma)^{26}\text{Al}(e^+\nu)^{26}$	$Ig = {}^{28}Si(\gamma, \alpha)^{24}Mg(\alpha, p)^{27}Al(\alpha, p)^{30}Si = {}^{32}S(n, \gamma)^{33}S(n, \alpha)^{30}Si(\alpha, \gamma)^{34}S = {}^{28}Si(n, \gamma)^{29}Si(\alpha, n)^{32}S(\alpha, p)^{25}Cl = {}^{29}Si(p, \gamma)^{30}P(e^+\nu)^{30}Si = {}^{29}Si(p, \gamma)^{30}Si = {}^{29}Si($
(c) low temperature, high density burning ${}^{12}C(p,\gamma){}^{13}N(e^+\nu){}^{13}C(\alpha,n){}^{16}O(\alpha,\gamma){}^{20}Ne$ ${}^{24}Mg(p,\gamma){}^{25}Al(e^+\nu){}^{25}Mg$ ${}^{21}Ne(n,\gamma){}^{22}Ne(n,\gamma){}^{23}Ne(e^-\bar{\nu}){}^{23}Na(n,\gamma){}^{24}Na(e^-\nu){}^{24}Ma(e^-\nu){}^$	electron captures ${}^{33}S(e^-, v){}^{33}P(p,n){}^{33}S$ ${}^{35}Cl(e^-, v){}^{35}S(p.n){}^{35}Cl$ g
	(b) high temperature burning
(a) basic energy generation	32 S(α, γ) ³⁶ Ar(α, p) ³⁹ K
20 Ne $(\gamma, \alpha)^{16}$ O 20 Ne $(\alpha, \gamma)^{24}$ Mg $(\alpha, \gamma)^{28}$ Si	$^{36}\text{Ar}(n,\gamma)^{37}\text{Ar}(e^+\nu)^{37}\text{Cl}$
(1) (2) (1) (-2) (1)	$^{35}Cl(\gamma,p)^{34}S(\alpha,\gamma)^{38}Ar(p,\gamma)^{39}K(p,\gamma)^{40}Ca$
(b) fluxes > $10^{-2} \times (a)$ 23NL ($x > 20$ NL $x > 26$ ML ($x > 29$ S)	$^{33}\text{Cl}(e^-, v)^{33}\text{S}(\gamma, p)^{34}\text{S}$
$\frac{25}{Na(p,\alpha)^{25}Ne} = \frac{25}{Na(\alpha,p)^{25}Mg(\alpha,n)^{25}S1}$	38 Ar(α, γ) 42 Ca(α, γ) 46 Ti
$\frac{28}{28} \sum_{n=1}^{28} \sum_{n=1$	42 Ca(α ,p) 42 Sc(p, γ) 40 Ti
$^{24}Ma(\alpha p)^{27}A1(\alpha p)^{30}S;$	
$^{26}M_{g}(p, y)^{27} \Delta I(p, y)^{28} \Delta I(e^{-\bar{y}})^{28}Si$	(c) low temperature, high density burning $31_{\text{Res}} = 31_{\text{Res}} = 31_{\text{Res}} = 32_{\text{Res}}$
$\operatorname{Mg}(\mathbf{p}, t)$ $\operatorname{Al}(\mathbf{n}, t)$ $\operatorname{Al}(\mathbf{c}, \mathbf{v})$ Sl	$P(e = v)^{3/2} S = P(n, \gamma)^{-2} P$ $3^{2}S(x = v)^{3/2} D(x = v)^{3/2} S$
(c) low temperature, high density burning	$7^{-5}(\ell^{-1}, V)^{-2} P(p, n)^{-5} S$ 33 $P(r_{-} c)^{-30} S$:
22 Ne(α ,n) 25 Mg(n, γ) 26 Mg(n, γ) 27 Mg($e^{-\bar{v}}$) 27 Al	$\frac{r^{2}r(p,\alpha)^{2}}{51}$
²² Ne left from prior neutron-rich carbon burning	i nielemann+2010

Si-burning

- Typical temperature: (3-4) 10⁹ K
- Net reaction: ²⁸Si + ²⁸Si
 - Fuel: silicon
 - Main products: Fe-group elements (A = 50-60 nuclei)

• Other reactions:
$${}^{28}Si + \gamma \rightarrow p + {}^{27}Al$$

 ${}^{28}Si + \gamma \rightarrow \alpha + {}^{24}Mg$
 ${}^{28}Si + \gamma \rightarrow n + {}^{27}Si$

 Balance between forward and reverse reactions for increasing number of processes: a + b ↔ c + d
 → Nuclear statistical equilibrium (NSE)

Nuclear Statistical Equilibrium (NSE)

• Chemical equilibrium (for species i):

$$Z_i \mu_p + N_i \mu_n = \mu_i$$

• Abundances given by:

$$Y(Z,N) = G_{Z,N} (\rho N_A)^{A-1} \left(\frac{A^{2/3}}{2^A} \right) \left(\frac{2\pi h}{m_n kT} \right)^{3/2(A-1)} Y_n^N Y_p^Z e^{B_{Z,N}/kT}$$

Nuclear Statistical Equilibrium (NSE)

Weak Interactions

- Become relevant in later burning stages
- Lead to neutronization
- Electron captures:

$$\begin{array}{ccc} p+e^- \rightarrow v_e+n \ \, \text{or} \ \ \, \mathbf{p}(e^-,v_e)\mathbf{n} \\ (A,Z)+e^- \rightarrow v_e+(A,Z-1) \ \, \text{or} \ \ \, ^A\mathbf{Z}(e^-,v_e)^A\mathbf{Z}\textbf{-}1 \end{array}$$

 $E_F(\rho Y_e = 10^7 \text{ gcm}^{-3})=0.75 \text{ MeV}$ $E_F(\rho Y_e = 10^9 \text{ gcm}^{-3})=4.70 \text{ MeV}$

 Electron fraction:

Central evolution

Pre-supernova stage

Composition

Pre-supernova stage

Origin of elements

Nuclear binding energy

 $H \rightarrow He \rightarrow C \rightarrow O \rightarrow \dots \rightarrow Fe$

Nuclear fusion in stellar cores

Need mechanisms other than charged-particle fusion: E.g. neutrons, photons, neutrinos

Origin of elements

How are nuclei made? Where? Through what processes?

Nuclear physics

- Need to know the relevant nuclear physics:
 - Properties of nuclei (mass, half-life, spin, levels, etc)
 - Properties of reactions between nuclei (and leptons, photons)

Reaction rates

Consider:

- n_i: number density of particles of type i cm⁻³
- n_i: number density of particles of type j cm⁻³
- σ : cross section (effective area for reaction) cm²

Reactions per time per volume

 relative flux of particles i
 x number of particles j
 x cross section
 r = n_i v n_i σ(v)

```
cm<sup>-3</sup> cm s<sup>-1</sup>
cm<sup>-3</sup>
cm<sup>2</sup>
cm<sup>-3</sup> s<sup>-1</sup>
```

Reaction rates

- Previously: particles i move at constant v
- For constant relative velocity between particles i and j

$$\rightarrow$$
 reacts / vol / time: $r_{i;j} = \int \sigma \cdot |\vec{v}_i - \vec{v}_j| dn_i dn_j$

• General: projectiles and targets follow velocity distribution

$$r_{i;j} = n_i n_j \int \sigma(|\vec{v}_i - \vec{v}_j|) |\vec{v}_i - \vec{v}_j| \phi(\vec{v}_i) \phi(\vec{v}_j) d^3 v_i d^3 v_j$$

Integral depends on type of particles and distribution

Maxwell-Boltzmann distribution

- Nuclei in astrophysical plasma are not monoenergetic
- They obey MB distribution

Reaction rates

• Use center-of-mass coordinates, carry out integration, and remember that $\int \phi(\vec{V}) d^3V = 1$

reaction rate becomes $r_{i;j} = n_i n_j \langle \sigma v \rangle_{i;j}$

with the thermonuclear cross section $\langle \sigma v \rangle$

$$\left\langle \sigma v \right\rangle (T) = \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E \sigma(E) \; \exp(-E/kT) dE$$

- Only depends on temperature
- If we know σ (E), we can get $\langle \sigma v \rangle$

Astrophysical S-factor

- Use known energy dependence of $\sigma(E)$
- For charged particles: σ (E) is proportional to:
 - Coulomb barrier penetration ~exp(-E ^{1/2})
 - Nuclear size ~1/E
- All other energy dependencies are lumped together into astrophysical S-factor S(E)
- Why?
 - For non-resonant reactions: S(E) is slowly varying
 - \rightarrow better to work with S(E) if extrapolations are needed

Astrophysical S-factor

- Cross section $\sigma = E^{-1} \times \exp(-E^{\frac{1}{2}}) \times S(E)$
- Reaction rate becomes

$$\begin{split} \langle \sigma v \rangle &= \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E\sigma(E) \ \exp(-E/kT) dE \\ &= \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty S(E) \ \exp(-bE^{-1/2}) \ \exp(-E/kT) dE. \end{split}$$

. ...

• S(E) is slowly varying with E, so integral is dominated by the two exponentials

Gamow peak

Most effective stellar energy

 Turn number of reactions per volume and time into differential equation, for a reaction i(j, o)m

$$r_{i;j} = \frac{1}{1 + \delta_{ij}} n_i n_j \langle \sigma v \rangle \qquad \longrightarrow \qquad \frac{(\frac{\partial n_i}{\partial t})_{\rho} = (\frac{\partial n_j}{\partial t})_{\rho} = -r_{i;j}}{(\frac{\partial n_o}{\partial t})_{\rho} = (\frac{\partial n_m}{\partial t})_{\rho} = +r_{i;j}}$$

0

0

• Total rate of change of number density:

$$\dot{n}_i = (\frac{\partial n_i}{\partial t})_{\rho} + n_i \frac{\dot{\rho}}{\rho}$$

• Includes changes due to density change (we are not interested in those)

Abundances, mass fractions

- Matter density ρ (g cm⁻³)
- Number density n depends on matter density
- Can we separate dependence on matter density?
- \rightarrow Define abundance Y = n / ρ N_A
- Units of abundance: mole g⁻¹
- Mass fraction $X_i = A_i Y_i$ with normalized sum

- Use abundance $Y_i = \frac{n_i}{\rho N_A}$ $\dot{Y}_i = \frac{\dot{n}_i}{\rho N_A} \frac{n_i}{\rho N_A} \frac{\dot{\rho}}{\rho}$
- Derivative becomes:

$$\dot{Y}_i = \frac{1}{\rho N_A} (\frac{\partial n_i}{\partial t})_{\rho} = -\frac{r_{i;j}}{\rho N_A} = -\frac{1}{1+\delta_{ij}} \rho N_A \langle \sigma v \rangle_{i;j} Y_i Y_j$$

- For decays (and reactions with photons and leptons):
 - "decay rate" λ
 - Derivate becomes $\dot{Y}_i = -\lambda_i Y_i$

Inverse reactions

- Many reactions are the inverse of an other reaction
- Forward and inverse reactions are linked by time reversal invariance
- For reaction i(j,o)m the thermonuclear cross section depends on
 - Q-value (energy difference between products and reactants)
 - Partition functions (Energy weighted density of states)

$$\langle \sigma v \rangle_{i;j,o} = \frac{1 + \delta_{ij}}{1 + \delta_{om}} \frac{G_m g_o}{G_i g_j} (\frac{\mu_{om}}{\mu_{ij}})^{3/2} \exp(-Q_{o,j}/kT) \langle \sigma v \rangle_{m;o,j}$$

• Set of coupled differential equations

 λ ... decay rate

• Set of coupled differential equations

$$\dot{Y}_{i} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{jk}^{i} \rho N_{A} \langle \sigma v \rangle_{jk} Y_{j} Y_{k} + \sum_{j,k,l} N_{jkl}^{i} \rho^{2} N_{A}^{2} \langle \sigma v \rangle_{jkl} Y_{j} Y_{k} Y_{l}$$

- Decays, photodisintegrations, reactions with leptons (e⁻,e⁺, v)
- Two-particle reactions
- Three-particle reactions (e.g. triple- α reaction)
- Right-hand side is sum of all reactions either creating or destroying species i
- Group into 1-body, 2-body, and 3-body reactions programming reasons

• Set of coupled differential equations

$$\dot{Y}_{i} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{jk}^{i} \rho N_{A} \langle \sigma v \rangle_{jk} Y_{j} Y_{k} + \sum_{j,k,l} N_{jkl}^{i} \rho^{2} N_{A}^{2} \langle \sigma v \rangle_{jkl} Y_{j} Y_{k} Y_{l}$$

- One equation for each species followed
 - ~2000 for supernova nucleosynthesis
 - ~6000 for r-process nucleosynthesis
- Matrix for system of DE is sparse
 - Use special solvers and matrix storage format

How to Model Nucleosynthesis

In principle: need 3D hydro in order to follow convection, mixing, explosion

Problems:

- Coupling of hydro to reaction networks (nucleosynthesis, energy generation)
- Explosions

Compromise:

- (1D) hydro with reduced energy generation network
- Mixing length theory, convection criteria
- Parameterized explosions (mass cut and/or explosion energy as free parameters)

Nevertheless: mostly reliable nucleosynthesis expected (except for nuclides dependent on explosion mechanism)

Implementation of Networks

- Fully coupled
 - Energy feedback + abundances
- Operator splitting
 - Reduced network for energy generation
 - Abundances in full network (mixing, convection)
- Post-processing
 - Reduced network for energy generation
 - Other abundances from post-processing

Explosive burning

- Similar to hydrostatic burning, but
 - Shorter timescales
 - Higher temperatures
- H-burning:
 - Hot CNO-cycle (pp-chains are too slow), where ¹³N(β) becomes ¹³N(p,γ)
- He-burning:
 - N-rich isotopes ¹⁵O, ¹⁸O, ¹⁹F, ²¹Ne
- C- and Ne-burning:
 - Simultaneously occurring

Explosive burning

- O-burning:
 - Quasi-equilibrium (regions of equilibrium, connected by individual reactions)
- Si-burning:
 - Complete destruction of silicon
 - Details depend on peak temperature and density:
 - Complete Si-burning
 - Incomplete Si-burning (p-rich)
 - Incomplete Si-burning (α-rich)

Explosive burning

