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We present a cryomodule design for the superconducting linacs for the proposed 
Rare Isotope Accelerator Facility (RIA).  This paper discusses the design of a 
cryomodule for all the drift-tube-loaded superconducting cavites required for the 
machine.  The same basic design will be used for the low and medium velocity 
sections of the driver linac and also for sections of the radioactive ion beam (RIB) 
linac.  Fundamental design choices such as separate vs. common beam and 
insulating vacuum spaces are driven by the clean fabrication techniques required 
for optimum cavity performance.  The design can be adapted to a variety of cavity 
geometries. 

 
 
 
INTRODUCTION 
 
The US nuclear physics community proposes the construction of a Rare Isotope Accelerator (RIA) 
designed to accelerate a wide variety of ions from protons through uranium [1].  The machine consists of 
four main elements: a driver accelerator, a target station for isotope production, a post accelerator for 
isotopes produced at the target, and an experimental area (see Figure 1).  The driver and post accelerators 
are linear machines using superconducting RF (SRF) accelerating cavities of various geometries, 
depending on the beam velocity.  The low and medium velocity portions of the driver (0.024<β<0.4 where 
β=v/c) as well as the post accelerator use drift-tube-loaded (DTL) SRF structures operating at 4.6 K while 
the high velocity portion of the driver (β of 0.49, 0.61 and 0.81) uses elliptical structures.  Figure 2 shows 
the various cavity geometries.  The two highest velocity structures make use of existing Spallation 
Neutron Source (SNS) cavity geometry [2].  Cryomodule design for all elliptical cell cavities will closely 
follow the SNS model [3].  This paper addresses design concepts for cryomodules for the DTL structures. 
 DTL structures used in heavy ion linacs typically run at lower frequencies than elliptical cavities.  
Historically they have operated with common insulating and beam vacuum spaces.  In the last decade 
substantial progress has been made in increasing the accelerating gradients for these structures, partly 
through application of techniques developed in the high velocity elliptical cell cavity community.  Chief 
among these techniques is the removal of sub-micron particulate contamination on the cavity surface by 
high pressure water rinsing (HPWR) and development of clean handling techniques.  To be effective, 
these techniques require that a clean environment for the cavity be rigorously maintained. 
 

 
Figure 1  Layout of the Rare Isotope Accelerator (RIA) facility 



 

 
Figure 2  Cavity geometry for the RIA driver.  Drift tube loaded structures 1-6 are suitable for the 
cryomodule described here while elliptical structures 7-9 will reside in SNS-style modules. 

 
The cryomodule described here evolved from existing, successful designs at Argonne National Laboratory 
(ANL) with the addition of features that permit separate cryogenic and cavity vacuum systems while 
retaining the desirable elements of past designs. 
 
 
CRYOMODULE DESCRIPTION 
 
The top loading box-style cryomodule design concept is shown in Figure 3.  Features include efficient use 
of interior space, ease of access and assembly, and ability to accommodate a variety of structure 
geometries in one basic design.  A similar layout is used very successfully in an existing heavy ion linac at 
ANL, where resonators with geometries 1 and 2 in Figure 2 operate with a common beam and insulating 
vacuum. 
 Current SRF practice emphasizes cleanliness as a means of achieving the highest accelerating 
gradients.  Separate beam and insulating vacuum spaces can be achieved in a top loading design via the 
angled vacuum vessel end walls shown in Figure 4.  After the cavity string has been assembled in a clean 
room, gate valves at either end are closed.  The assembly is suspended from the vacuum vessel top plate 
and lowered into the vessel where angled plates on the beam tube seal against the vacuum vessel end 
walls.  A separate beamline vacuum allows the use of standard cryogenic techniques such as multilayer 
insulation (MLI), a forbidden practice where beam and insulating vacuums are common.  Handling is 
greatly simplified as well since the size of the clean room compatible object is minimized. 
 Beam dynamics issues require module-to-module spacing to be minimized. The current design 
achieves about 0.5 m between active elements.  Preliminary lattice calculations [4] indicate the spacing to 
be adequate in maintaining beam quality. Table 1 gives basic cryomodule parameters.  The number of 
cavities required to achieve the required beam energy depends on the gradient achieved; therefore high  
 

 
Figure 3  Top loaded box cryomodule concept showing separate beam and insulating vacuum spaces 



 
                                                          Table 1  Driver linac parameters (DTL cavity sections)    
Driver linac section     low velocity   medium velocity total  
Cavity frequency [MHz]   57.5 115 172.5 345 
Cavity geometry (see Figure 2)  1,2,3 4 5 6 
Cavities required (@20 MV/m Epeak)  41 36 88 72 237 
  Cavities required (@22.5 MV/m Epeak)  37 32 78 64 211 
    Cavities required (@27.5 MV/m Epeak)  32 26 64 52 174  
 
gradients are desirable to either reduce the overall length and cost of the driver or to provide operating 
margin.  Original estimates of drift tube cavity performance were based on existing machines without 
separate beam and insulating vacuum spaces.  Recent developments [5] using HPWR suggest that peak 
electric fields beyond the original 16 MV/m estimate are reliably achievable.  Table 1 shows how the 
number of drift tube cavities falls as performance improves.  There is an additional dynamic heat load 
imposed by higher gradient operation, with a potential factor of three increase in power dissipation per 
cavity, but the extra refrigeration cost is dwarfed by the savings associated with the need for fewer cavities 
(total system cost associated with DTL structures are estimated at roughly 400k$ per cavity). 
 Module length will be determined by the lattice and by handling issues.  Current lattice 
configurations call for eight or nine cavities per cryomodule, with between two and eight focusing 
elements per module depending on lattice location.  These elements are superconducting solenoids 
operating at 4.6 K with fields between 6 and 11 Tesla.  This gives cryomodule lengths of around 4.5 to 5 
meters, which is considered manageable for clean room handling and tunnel installation.  Depending on 
gradient chosen, there will be between 20 and 30 of these cryomodules fabricated for the driver linac.  The 
post accelerator contains approximately 100 additional DTL cavities (about 12 cryomodules).   
 
 
SUPPORT SYSTEMS 
 
The drift tube cavities operate at 4.6 K using a pool boiling/thermosiphon approach identical to that 
employed by the Positive Ion Injector (PII) cryomodules used in the ATLAS heavy ion linac at ANL [6].  
The RIA cryogenic system concept is described in reference [7] and provides refrigeration totaling 5 kW 
at 4.6 K, 8.6 kW at 2.0 K, and 15.3 kW at 35 K in addition to 15 g/s liquefaction.  These loads are based 
on the original 16 MV/m peak electric field gradient.  An increase to 27.5 MV/m could mean a 30% 
reduction in cavity count, although the factor of three increase in dynamic heat load (assuming constant 
static load) translates to a 17% increase in required capacity at 4.6 K. 
 Input coupler development is underway.  Drift tube structures can employ either fixed or variable 
coupling.  Either form is suitable for this cryomodule.  The adjustable coupler shown in Figure 5 couples 
magnetically to the cavity and is installed up through ports in the module bottom plate to minimize 
particulate contamination during coupler adjustment. 
 
 

   
 

Figure 4  Detail of vessel end wall design showing 
isolated beamline in a top-loading design 

 Figure 5  Adjustable input coupler concept for drift 
tube cavities

 



 Cavity tuning may be accomplished using slow pneumatic tuners similar to those used in PII at 
ATLAS, consisting of a mechanical linkage actuated by a cold helium gas operated bellows which 
compresses or extends the cavity along the beam axis.  Other mechanical tuners using cold stepper motors 
in vacuum or motors external to the cryostat are also compatible with this design.  Such a tuner is effective 
in bringing the cavity on frequency after cool down and canceling the effects of slow pressure fluctuations 
caused by the cryogenic system during operation.  For fast disturbances (e.g. microphonics) the cavities 
can either be overcoupled or employ PIN diode “fast tuners” similar to those used at ATLAS [8].  These 
devices each dissipate as much as several hundred watts at about 100K. 
 The cavities are mounted to a cross-braced frame assembly and aligned with respect to the beam line 
on this frame while in the clean room.  After all clean components are assembled, the cavity string is 
isolated by gate valves on either end of the assembly. The string is removed from the clean room and 
suspended from the vacuum vessel top plate, after which the top plate assembly is lowered into the 
vacuum shell.  Radiation shielding with multilayer insulation lines the walls and floor of the vacuum shell 
as well as the underside of the top plate.  Large access ports are included to facilitate troubleshooting and 
maintenance in place, without requiring removal of the top plate assembly from the vacuum shell. 
 
 
CONCLUSION 
 
A box cryomodule geometry is well suited to the DTL SRF cavities which make up the low and medium 
velocity portions of the RIA driver linac as well as the post accelerator.  Such a design builds on 
successful existing designs while incorporating new features such as separate insulating and beamline 
vacuum spaces, which can maintain ultra-clean cavities.  Clean conditions enable the use of modern cavity 
fabricating and processing techniques which result in substantial gains in cavity performance.  The 
rectangular cross section accommodates a variety of cavity geometries, permitting a single basic 
cryomodule design to cover a wide range in beam velocity.  Assembly of a cavity string plus ancillary 
components is straightforward and permits a top-loading configuration consistent with close module-to-
module spacing and separate vacuums.   
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