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Abstract

Excited structures in the proton-rich nucleus140Dy have been established following the decay of an 8− isomer. The excitation
energy of the isomer is established to be 2.16 MeV with a half-life of 7.3 ± 1.5 µs. The isomer decays into the yrast line at
the 8+ state, revealing a rotational band with a deduced deformation ofβ2 = 0.24(3). The isotope140Dy is the daughter of the
deformed proton emitter141Ho. The new information obtained here supports the role of deformation in proton emission and
the previous assignments of single-particle configurations to the two proton emitting states in141Ho. In addition, the reduced
hindrance factor measured for the isomer is consistent with the trend observed in theN = 74 isotones. 2002 Elsevier Science
B.V. All rights reserved.

PACS: 21.10.Re; 23.20.-q; 23.20.Lv; 27.60.j

The proton drip line can be readily delineated,
aboveZ = 50, by nuclei which decay by the emission
of a proton. So-called proton emitters have by now
been identified in almost all odd-Z systems from
Sb (Z = 51) to Bi (Z = 83) [1]. In most instances,
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proton emission can be understood in terms of simple
quantum tunneling through a one-dimensional barrier
from a spherical nucleus. Hence, proton decay has
become a potent spectroscopic tool to characterize
states located near the Fermi surface in nuclei at the
very limits of stability.
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Recently, proton radioactivity has been observed
in 141Ho and131Eu [2]. Based on the measured half-
lives, the proton emitting states have been interpreted
as requiring the presence of a sizeable quadrupole de-
formation, and the decay rates have been reproduced
using, for example, the multiparticle theory of pro-
ton emission from deformed nuclei by Bugrov and
Kadmensky [3]. In131Eu, additional information was
obtained by observing not only proton decay to the
ground state of the daughter nucleus,130Sm, but also
to the first excited 2+ level [4]. By utilizing both
the excitation energy of the 2+ state and the branch-
ing ratio, the spin and intrinsic configuration of the
proton emitting state could be determined unambigu-
ously[4]. In 141Ho, no such decay to the 2+ level
has been observed so far, and the assignment of the
7/2−[523] and 1/2+[411] Nilsson configurations to
the 141Ho ground and isomeric states, respectively,
was deduced solely from the measured decay rates [2,
5]. Confirmation of sizeable deformation as well as
complementary information on the structure of these
states was obtained from in-beamγ -ray studies uti-
lizing the Recoil Decay Tagging (RDT) technique
where rotational bands were established on top of both
proton-emitting states [6]. The deduced deformations,
β2 ∼ 0.25(4), are consistent with those inferred from
the proton decay rates. Furthermore, an analysis of
the moments of inertia for each band also supports
the single-particle configurations proposed from the
proton-emission work.

While both the configuration and deformation of
the 141Ho proton-emitting states are consistent with
the results of the in-beamγ -ray study, critical infor-
mation about the140Dy daughter nucleus is still miss-
ing. Proton emission to the 2+ level in 140Dy has not
been observed, however, an upper limit for the branch-
ing ratio between the 2+ and 0+ feedings into140Dy
has been placed at 1% [6] for decays from the assigned
7/2− 141Ho, ground state. Based on this limit, calcu-
lations using the adiabatic formalism of Ref. [7] place
a lower limit of ∼ 190 keV for the excitation energy
of the 2+ state in140Dy.

Among the surprises of the in-beam RDT stud-
ies [6] is the observed large energy (signature) split-
ting between the favored and unfavored band partners
which has been viewed as indicative of the onset of
sizeable Coriolis mixing. It has been suggested that
this mixing results from shape polarization imposed

by the odd proton when it occupies the 7/2−[523] or-
bital [6]. Interestingly, coupled channel calculations,
which include the effects of Coriolis mixing, estimate
the spectroscopic factor to be 3.2 [7] and 4.9 [8] for the
proton decay of the ground state. This should be com-
pared with the more reasonable value of 0.66 deduced
within the adiabatic approximation [7] where Coriolis
mixing is not explicitly considered. Thus, the model
which best reproduces the observed lifetimes and the
data on excited states seem to contradict one another.
One possible explanation is that there is little Corio-
lis mixing in the ground state and that it is induced
at higher-spins by rotation. To investigate this further
and to confirm the implicit theoretical assumption that
both the parent and daughter have the same deforma-
tion, it would be useful to measure the yrast band of
140Dy, in order to establish the excitation of the 2+
level as well as to deduce the associated deformation.
The isotope,140Dy is, however, difficult to study with
conventional in-beamγ -ray spectroscopy, because its
production cross section using heavy-ion fusion evap-
oration reactions is small and of order,σ � 10 µb.
The problem of small cross sections was overcome
for 141Ho by utilizing the RDT technique, a powerful
method which correlates prompt-γ radiation with the
characteristic charged-particle decay of the nucleus of
interest [6]. Unfortunately,140Dy decays only viaβ+
emission and, thus, the RDT technique cannot be ap-
plied for in-beam studies of this isotope.

Recently, Cullen et al. [9] suggested that the yrast
band of140Dy could be identified at least up to the 8+
level by measuringγ rays emitted following the decay
of a predictedKπ = 8− isomer. Indeed, a number of
high-K isomers has been identified in theN = 72–74
isotones. For example,Kπ = 8− isomeric states are
known in all of the even–evenN = 74 isotones,128

54Xe
[10], 130

56Ba [11], 132
58Ce [12], 134

60Nd [13], 136
62Sm [14]

and138
64Gd [15]. The associated half-lives range from

nanoseconds (Xe) to milliseconds (Ba, Ce). Recent
calculations [16] have predicted the presence of a simi-
larKπ = 8− isomeric state in140Dy with an excitation
energy of 2.15 MeV and a deformationβ2 = 0.26. The
measurement of the isomer’s half-life and excitation
energy is also interesting in this instance as it provides
one of the few tests of the applicability of the concept
of K-forbiddenness at the proton drip line and gives
additional information about the shape of140Dy. In
this Letter, we report the identification of theKπ = 8−
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isomer in140Dy at 2.16 MeV, and its subsequent decay
by γ emission to the ground state. The half-life of the
isomer is measured to be 7.3± 1.5 µs, and the excita-
tion energy of the 2+ state is 202 keV.

In order to populate and identify states following
the decay of theKπ = 8− isomer in140Dy, a 245 MeV
beam of54Fe ions from the ATLAS accelerator, at Ar-
gonne National Laboratory, was directed on a self-
supporting, 550 µg/cm2 foil of 92Mo (> 90% en-
riched). A 5 µg/cm2 thick carbon foil was located be-
hind the target to reset the charge state distribution
of the recoiling evaporation residues. The latter were
then sent through the Argonne Fragment Mass An-
alyzer (FMA) [17] and were dispersed according to
their mass-to-charge (M/q) ratio at the focal plane
of this instrument. A position-sensitive, parallel grid
avalanche counter (PGAC), located at the focal plane,
provided theM/q information as well as the time
of arrival and energy-loss signals of the evaporation
residues. The recoiling nuclei were subsequently im-
planted into a large area silicon detector located 40 cm
behind the PGAC. Surrounding this Si detector were
7 HPGe detectors of various sizes and efficiencies.
A 70% efficient, co-axial detector was placed directly
behind the Si detector. Four∼ 25% co-axial detec-
tors of the so-called “golf club” configuration were
mounted at∼ 90◦ to the beam,∼ ±45◦ from the hor-
izontal plane. Two planar Ge detectors were located
at ∼ 90◦ with respect to the beam and±90◦ with re-
spect to the horizontal plane. A valid trigger consisted
of a PGAC-Si coincidence and aγ ray detected within
80 µs of the implantation of a residue into the Si de-
tector.

With this 54Fe+ 92Mo reaction at 245 MeV,140Dy
is produced via theα,2n evaporation channel. In
addition, mass 140 isobars represent only∼ 5% of the
fusion-evaporation cross section at this beam energy
while the two dominant masses areA = 142 and 143.
In order to minimize contributions from other reaction
channels, slits were placed in front of the PGAC,
allowing only 2 charge states of mass 140 residues
to be detected at the focal plane. As a result, a beam
intensity as high as 20 pnA was accommodated.

The totalγ -ray spectrum measured in the experi-
ment is given in Fig. 1(a). Besides the dominant anni-
hilation line at 511 keV, most of the remaining tran-
sitions can be associated with theβ decay of140Tb,
140Gd, 140Eu and140Sm. These transitions appear in

the spectrum due to random coincidences between the
implanted ions and theγ rays following β decay.
Fig. 1(b) shows aγ -ray spectrum measured within
10 µs after the arrival of a residue in the Si detector.
In this case, the random coincidences have been sub-
tracted from the total spectrum. Most of the strongest
transitions arise from the decay of a 15 µs isomer in
142Tb [18,19] and the decay of a 0.5 µs isomer in
144Ho [19]. For the142Tb case, the isomeric state is
strongly populated at this beam energy and is observed
in the data due to tails in the mass distribution which
overlap with theA = 140 mass peaks. For the144Ho,
its production most likely results from reactions in-
volving 94Mo which are present in the target at the
∼ 2% level. The unidentifiedγ rays in the spectrum
are candidates for transitions following the isomer de-
cay in 140Dy. The analysis of theγ -ray coincidence
matrix produced with the requirement that theγ rays
were emitted within 20 µs of the detection of an im-
planted ion yielded a set of fiveγ rays (202.1, 363.2,
475.8, 549.4, and 573.6 keV) in coincidence with one
another. A spectrum produced from a sum of coinci-
dence gates placed on all five transitions is shown in
Fig. 1(c). Theseγ rays are weak but discernible in
Fig. 1(b).

The time spectrum between the arrival of a residue
at the Si detector and the subsequent coincident emis-
sion of any two of the fiveγ rays is given in Fig. 2(a).
A fit to these data indicates that these transitions fol-
low the decay of an isomer with a half-life of 7.3 ±
1.5 µs. This value compares well with the systematic
trend of the lifetimes of theKπ = 8− isomeric states
across theN = 74 chain, which results in an antici-
pated lifetime of∼ 6 µs for theKπ = 8− isomer in
140Dy. TheM/q spectrum associated with these five
transitions is shown in the top panel of Fig. 2(b). It was
produced under the same conditions as the time spec-
trum in Fig. 2(a). The bottom panel of Fig. 2(b) gives
the M/q spectrum associated with the142Tb isomer
(dashed line) whoseγ rays are marked in Fig. 1(b).
Also shown as a solid line is the totalM/q spectrum
when the slits are removed. The spectrum in the top
panel conforms nicely, both in shape and in width,
with the A = 140 peaks observed in the totalM/q

spectrum, thus confirming that theγ transitions from
Fig. 1(c) belong to a residue with mass 140. In con-
trast, theM/q spectrum for the142Tb isomer (dashed
line) is much broader and fills up the entire area al-
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Fig. 1. (a) The totalγ -ray spectrum measured in this experiment. Besides the dominant 511-keV, annihilation line, most of the remaining
transitions can be associated with theβ decay of140Tb, 140Gd, 140Eu and140Sm. (b) A spectrum ofγ rays measured within the first
10 µs following the arrival of a residue in the Si detector. The contribution from random coincidences has been subtracted. (c) A spectrum
produced from a sum of coincidence gates placed on the 202.1-, 363.2-, 475.8-, 549.4-, and 573.6-keV transitions in a matrix produced with
the requirement that theγ rays were emitted within 20 µs of the detection of an implanted ion.

lowed by the slits, as expected for tails from the142Tb
mass peaks. While there is some evidence for co-
incidences between the fiveγ lines and Dy X rays
(Fig. 1(c)), the statistics are not sufficient to provide
an unambiguous140Dy assignment. Nevertheless, the
observed yield is consistent with that expected from
the internal conversion process assuming an E2 mul-
tipolarity for the first four transitions (note that nearly
all this X-ray yield originates from the lowest energy

transition at 202.1 keV). Fig. 2(c) presents the pro-
posed ordering of theγ rays assuming that they origi-
nate from the decay of the expectedKπ = 8− isomer
in 140Dy. The placement of the 549.4- and 573.6-keV
transitions could be transposed. Arguments in favor of
the current placement are given below. Fig. 3 illus-
trates the systematic trend for the 0+, 2+, 4+, 6+, 8+
andKπ = 8− states across the knownN = 74 chain,
from 130Ba to 138Gd, together with the proposed se-
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Fig. 2. (a) Time delay between the implant of a residue and the detection in prompt coincidence of any two of the fiveγ rays of Fig. 1(c). The
solid line represents a fit to the data which yields a half-life of 7.3 µs. (b) Top panel:M/q spectrum measured at the FMA focal plane when
requiring the detection of an implanted ion followed within 20 µs by any two of the fiveγ rays of Fig. 1(c) in prompt coincidence (mass slits
in place). Bottom panel: the dashed-line histogram is theM/q spectrum observed when requiringγ rays in142Tb to be measured within 20 µs
of the detection of an implanted ion (mass slits in place). The solid-line histogram is the observed totalM/q spectrum when the mass slits are
removed. (c) Proposed level sequence following the decay of theKπ = 8− isomer in140Dy.

quence of Fig. 2(c). It can be seen that the new points
continue the smooth trend exhibited by earlier data.
This observation together with the lifetime and the as-
sociation with a mass 140 residue, leads us to assign
the isomer and its subsequent decay to140Dy.

The deformation of the ground-state band in140Dy
can be estimated using the approach proposed by
Grodzins [20] which requires only the excitation
energy of the first 2+ state and the mass number
of the nucleus as input. The deduced deformation
for 140Dy is β2 = 0.24, a value which is close to
that obtained with the same method for138Gd; β2 =

0.237. In addition, the deformation of the daughter,
calculated with the Grodzins prescription, is nearly
the same as that extracted from the rotational band
built on the ground state in141Ho (β2 = 0.25(4)) [6].
Recent Woods–Saxon constrained shape polarization
calculations [16] predict the existence of aKπ = 8−
isomeric state in140Dy at an excitation energy of
2150 keV with a deformationβ2 = 0.26. Thus, the
experimental excitation energy of 2164 keV and the
associated deformation ofβ2 = 0.24(3) are in good
agreement with these theoretical expectations.
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Fig. 3. The excitation energies of theKπ = 8− isomeric states and
the yrast bands for theN = 74 isotones from130Ba to 140Dy. The
new values for140Dy continue the rather slow and smooth decrease
with increasing mass from136Sm to138Gd.

The branching ratio between the proton decay from
the 7/2− state in141Ho to the ground state and first
2+ state in140Dy has been calculated with the adia-
batic formalism of Ref. [7]. In the calculations, val-
ues ofβ2 = 0.244, obtained from the Grodzins for-
mula, andβ4 = −0.046, scaled from the Möller pre-
diction, were used for140Dy. (Möller et al. [21] pre-
dict deformationsβ2 = 0.267 andβ4 = −0.05 for
140Dy.) The resulting branching ratio is 0.7%, con-
sistent with the experimental upper limit of 1% ob-
tained in Ref. [6]. As mentioned above, in the study
of 131Eu this branching ratio enabled a determina-
tion of the intrinsic configuration of the proton emit-
ting state. Such information was required, because
the decay rates for the two candidate configurations
were, by chance, nearly the same while the calculated
branching ratios differed significantly. For141Ho, the
measured decay rates led to an unambiguous assign-
ment of the configurations to the two proton emitting
states [2,5]. In the study of excited structures built
upon these states [6], the moments of inertia of the
observed bands were compared with those of simi-
lar configurations in lighter nuclei. It was noted that
the behavior of the bands as a function of rotational
frequency was consistent with the configurations pro-
posed in the proton decay work. With the identifica-
tion of the rotational band in140Dy, a direct compar-

Fig. 4. The dynamical moments of inertia,J (2) , as a function of
rotational frequency for the two rotational bands identified in141Ho
[6], the yrast band of138Gd [22], and the newly identified yrast band
of 140Dy, see text for details.

ison of the rotational properties of the two bands in
141Ho with those of the even-even core is now possi-
ble.

Fig. 4 presents the dynamical moments of inertia,
J (2), as a function of rotational frequency for the two
rotational bands identified in141Ho [6], the yrast band
of 138Gd [22], and the newly identified yrast band of
140Dy. For the case of140Dy, the two data points at the
highest rotational frequency represent the assignment
of either the 549.4-keV or the 573.6-keV transition
to the 8+ → 6+ transition. As mentioned above, it is
not possible to determine the ordering of these two
transitions from the current data. There is a marked
difference in the evolution of theJ (2) moment for
the two141Ho bands. The nearly constant moment of
inertia for the141Ho ground state band was cited as
confirming evidence for a h11/2 assignment, as it is
brought about by the blocking of the alignment of a
pair of h11/2 quasiprotons. In contrast, the rise of the
J (2) moment in the band built on the isomer has been
attributed to such a proton h11/2 alignment, and this is
consistent with the 1/2+[411] assignment suggested
from the proton decay rates. The yrast band of138Gd
exhibits a behavior similar to that of the 1/2+[411]
band over the same frequency range. For the case
of 140Dy, the level scheme as presented in Fig. 2(c)
results in aJ (2) moment which is nearly identical
to that of 138Gd. If the ordering of the 549.4- and
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Table 1
Systematics of reduced hindrance factors,fν , for observed E1
decays fromKπ = 8− isomers in theN = 74 isotones [15]. The
value for140Dy is from this work

Nucleus T1/2 fν

130
56Ba 112±2 ms 43.5

134
60Nd 410±30 µs 26.1

136
62Sm 15±1 µs 24.9

138
64Gd 6±1 µs 24.1

140
66Dy 7.3±1.5 µs 24.6

573.6-keV transitions is transposed, a more gentle rise
of theJ (2) moment is observed, suggesting a delay in
the rotational alignment of the h11/2 quasiproton pair.
This effect is not a priori an unreasonable expectation
because of the increase in the deformation and the
moving of the Fermi surface higher in the h11/2
subshell. It is, however, not supported by the behavior
of the 1/2+[411] band in141Ho whose placement at
the Fermi surface and whose associated deformation
are nearly identical to those of140Dy. Based on these
observations, the ordering of the transitions presented
in Fig. 2(c) appears to be most consistent with the
rotational properties observed in neighboring nuclei
and is adopted here as the most likely.

In order to compare the isomeric decay of the
Kπ = 8− state in 140Dy with the decays of other
Kπ = 8− isomers in the neighboringN = 74 isotones,
the reduced hindrance factor,fν , has been calculated.
This factor is defined as

(1)fν = {
T

γ

1/2/T W
1/2

}1/ν
,

whereT
γ

1/2 is the partialγ -ray half-life, T W
1/2 is the

Weisskopf single-particle estimate,ν is the degree
of K forbiddenness,ν = �K − λ, and λ is the
multipolarity of the transition depopulating the iso-
meric state. The reduced hindrance per degree of
K-forbiddenness for the direct, 573.6-keV, E1 transi-
tion from theKπ = 8− isomeric state to the ground-
state band in140Dy is deduced to be 24.6. As can be
seen from Table 1, this value is essentially the same
as those obtained for all otherN = 74 even–even iso-
tones, with the exception of130Ba (see below for a
further discussion of this point). The fact that, in ad-
dition to the smooth energy systematics of Fig. 3,
the fν factor is also very close to that of the other
N = 74 isotones can then be viewed as a clear in-

dication that the interpretation of the new long-lived
state as aK isomer is justified, and that the prox-
imity of the proton drip line has little effect upon
the stability and properties of thisK-isomer. Fur-
thermore, the fact thatK is approximately a good
quantum number in140Dy can in turn be regarded
as strong experimental evidence for an axially sym-
metric nuclear shape. This validates the approach
used here to extract the prolate deformation parame-
ter and adds credibility to the discussions presented
above.

The near equality of the hindrance factors in Ta-
ble 1 can also be used to propose a configuration for
the 140Dy isomer. In the mass 180 region, it has been
shown that there is a correlation between the reduced
hindrance factors and the configuration changes in-
volved in the decay of similarK-isomers [23–25]. The
equality of the hindrance factors, therefore, supports
the 7/2+[404] ⊗ 9/2−[514] two-quasineutron config-
uration for theKπ = 8− isomer in140Dy, matching
the 8−, ν2 configuration established in theN = 74 iso-
tones,134Nd [13], 136Sm [14] and138Gd [15]. As al-
ready pointed out by Bruce et al. [15], the largerfν

value for130Ba could reflect a change in the configu-
ration and/or possibly in the shape associated with the
isomer. Additional confirmation of the configuration
of the Kπ = 8− isomer in140Dy could be obtained
from M1/E2 branching ratios of the collective rota-
tional band built on the isomer as in Refs. [26,27]. This
information is presently not available.

In summary, excited states in the proton-rich nu-
cleus140Dy have been established following the decay
of aKπ = 8− isomeric state. The excitation energy of
the isomer is established as 2.16 MeV with a half-life
of 7.3 ± 1.5 µs. The isomer decays into the yrast line
at the 8+ state, revealing a rotational band based on
an axially symmetric shape with a deduced deforma-
tion of β2 = 0.24(3). 140Dy is the daughter nucleus
of the deformed proton emitter141Ho, and the new
information obtained in this work supports previous
single-particle assignments to the two proton emitting
states in141Ho. Based on the measured 2+ energy and
the deduced deformation, the adiabatic calculation of
Ref. [7] predicts a branching ratio for proton decays to
the first excited 2+ state in140Dy of 0.7%. This value
is consistent with the experimental upper limit of 1%.
In addition, the reduced hindrance factor deduced for
the isomer is consistent with the trend observed in the
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N = 74 isotones and shows no deviations which could
be attributed to the proximity of140Dy to the proton
drip line.
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