Ultrasensitive Isotope Trace Analyses with a Magneto-Optical Trap

C. Y. Chen, Y. M. Li, K. Bailey, T. P. O’Connor, L. Young, Z.-T. Lu

Laser manipulation of neutral atoms has been used to count individual krypton-85 and krypton-81 atoms present in a natural krypton gas sample with isotopic abundances in the range of 10^{-11} and 10^{-13}, respectively. This method of isotope trace analysis is free of contamination from other isotopes and elements and can be applied to several different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1 \times 10^{-7}. System improvements could increase the efficiency by many orders of magnitude.

Ultrasensitive isotope trace analysis has been an important tool in modern science. Two well-developed methods, low-level counting (LLC) (1) and accelerator mass spectrometry (AMS) (2), have been used for dating as well as for studying the transport processes in the ocean, atmosphere, and groundwater (3, 4). They also have applications in studying cosmic rays (5), detecting solar neutrinos (6), and searching for exotic particles (7). Here we report the development of a widely applicable method, atom trap trace analysis (ATTA), which can enhance the capability and expand the applications of ultrasensitive isotope trace analyses.

As a test we focused on the long-lived 85Kr and 81Kr isotopes. 85Kr has a half-life of 10.8 years and an abundance of \sim 10^{-11} (3) and 81Kr has a half-life of 2.3 \times 10^5 years and an abundance of (5.9 \pm 0.6) \times 10^{-13} (8). The present-day 85Kr in the environment has been released primarily by nuclear-fuel reprocessing plants. Its abundance has increased a millionfold since the 1950s. It has been used as a general tracer to study air and ocean currents (3), date groundwater (3), and monitor nuclear-fuel reprocessing activities (9). In contrast, 81Kr is produced in the upper atmosphere by cosmic ray–induced reactions and is shielded from manmade fissen products by stable 81Br. 81Kr is an ideal tracer for dating ancient groundwater and ice on the time scale of 10^3 to 10^6 years (10), but accurate measurement has been difficult (11). A method of counting 81Kr atoms would also make possible a solar neutrino detector that is sensitive to both 7Be and 8B neutrinos from the sun (6, 12).

LLC generally has been used to measure the abundance of an isotope by counting its nuclear decays. It is currently used to count 85Kr. Although once used to count 81Kr (8), this is no longer possible because of the high present-day decay background of 85Kr. Taking a different approach, AMS counts atoms instead of decays, thereby greatly enhancing the detection efficiency and avoiding the radioactive background problem. AMS is now routinely used as the standard method of 14C dating (4). Recently, AMS has been applied to count 85Kr and date groundwater (12). In this work, a high-energy cyclotron (K1200, MSU) was used to remove all the electrons from the atoms so that 81Kr can be separated from its abundant isobar 81Br. Laser-based techniques, such as resonance ionization spectrometry (RIS) (14), have potential for being simple and efficient. Using RIS, Hurst and co-workers have counted 81Kr atoms in an enriched sample with over 50% efficiency (13). So far, neither laser-based technique has demonstrated the isotopic selectivity required to count 81Kr or 85Kr in a natural sample.

The ATTA method we developed is based on laser manipulation of neutral atoms. ATTA differs significantly from previous methods in that it is free of contamination from different isotopes or elements. Therefore, ATTA can tolerate impure gas samples, does not require a special operation environment, and is sensitive to certain proposed anomalously heavy isotopes (7).

Our design is based on a type of magneto-optical trap (MOT) system that had been used to trap various metastable noble gas atoms (17). Trapping krypton atoms in the 5s[3/2]_2 metastable level (lifetime = 40 s) is accomplished by exciting the 5s[3/2]_2-5p[5/2]_1 transition with laser light with a wavelength of 811 nm generated by a Ti-sapphire ring laser. The laser frequency, after shifting by the Zeeman slowing technique (18), is locked to a reference absorption line of the abundant 83Kr atoms in a cell. Two repump sidebands are generated via additional AOMs to optically pump the atoms into the 5p[5/2]_1 level (F = 13/2 for 83Kr, F = 11/2 for 85Kr) where they can be excited by the trapping light (Fig. 1). In the analysis, a krypton gas sample is injected into the system through a 0.1-mm-diameter nozzle, around which a dc discharge is maintained. A fraction (about 1 \times 10^{-4}) of the atoms are excited into the 5s[3/2]_2 level by the discharge and, after exiting the discharge region, remain in this metastable level until they hit walls. Two-dimensional transverse cooling is used to reduce the atomic beam divergence and amplify the atom flux in the forward direction by a factor of 20. The thermal (300°C) atoms are then decelerated by the Zeeman slowing technique (18) and loaded into a MOT (19). Atoms remain trapped for an average of 1.8 s when the vacuum is maintained at 2 \times 10^{-8} torr. This trap system can capture the abundant 85Kr (isotopic abundance = 11.5%) at a rate of 2 \times 10^8 s^{-1}. The ratio of the capture rate to the injection rate gives a total capture efficiency of 1 \times 10^{-7}.

With expected capture rates between 10^{-3} and 10^{-2} s^{-1} for the rare krypton isotopes, the system must be capable of detecting a single atom in the trap (20). In the trap, a single atom scatters resonant photons at a rate of 10^5 s^{-1}, of which 1% are collected, spatially filtered to reduce background light, and then focused onto an avalanche photodiode (EG&G, SPCM-AQ-212) with a specified photon counting efficiency of 25%. For single-atom detection, each trapping laser beam is set at 1 cm diameter and 2 mW/cm^2, and the magnetic field gradient of the MOT is set at 16 G/cm along its axis. Under these conditions, fluorescence from a single atom induces a signal of 15 kilocounts per second
(kcps) and the background is 18 kcps (Fig. 2). These laser and field parameters differ significantly from those needed for an optimum trap loading rate (3-cm diameter, 10 mW/cm², and 8-G/cm field gradient). The trap loading conditions generate too much background light to permit single atom detection, so we switch at 2 Hz between the optimal parameters for loading and detection, with each phase lasting 0.25 s.

We have trapped and counted 85Kr and 81Kr atoms from natural krypton gas (Fig. 2). The frequency settings of the trapping laser and the two sidebands (Fig. 1) are in good agreement with previous spectroscopic measurements obtained with enriched 85Kr gas and enriched 81Kr gas. This fluorescence from a trapped 85Kr atom decreases as the laser frequency is tuned away from resonance, following the expected Lorentzian shape (Fig. 3). We also mapped the atom capture rate versus laser frequency (Fig. 4B) and showed that the maximum loading was achieved with the frequency detuned about 4 MHz below resonance, consistent with the results observed on 85Kr traps (Fig. 4A). Furthermore, we performed repeated tests under conditions in which a 85Kr trap should not work, such as turning off repump sidebands and tuning the laser frequency above resonance, and these tests always yielded zero atom counts. When we required an atom fluorescence signal to be >10 kcps, atom counts were observed in a frequency band only 12 MHz wide (Fig. 4C). This test shows that the recorded counts are due to laser-trapped 85Kr atoms and that no background atom counts from other isotopes or elements have been observed. We conducted similar tests with 81Kr. We alternated the laser frequency settings between the optimum trap condition (Fig. 1) and, as a background check, 5 MHz above the optimum condition where trapping does not work. In this case we counted 12 81Kr atoms in a total of 5 hours at the optimum trap condition, and we obtained 0 counts in another total of 5 hours during background checks.

Previous efforts to develop a laser-based technique have encountered serious problems with contamination from nearby abundant isotopes. ATTA is immune from isotope contamination for several reasons: fluorescence is collected in only a small region (0.5 mm diameter) around the trap center; a trapped atom is cooled to a speed below 1 m/s so that its laser-induced fluorescence is virtually Doppler-free (J9); a trapped atom allows a long observation time, during which 10³ scattered signal photons are collected; and trapping allows the temporal separation of capture and detection so that both capture efficiency and detection sensitivity can be optimized. In the case of counting 85Kr, photons scattered off of the walls and the metastable Kr atomic beam (22) induce a background of 18 kcps on the photon counter. With a 200-ms observation period, the signal of a single trapped atom is 40 times the noise (1σ) of the background photons. Our design also provides additional features, although they were unnecessary in the case of krypton, to further improve isotopic selectivity, such as chopping off the atomic beam before detecting the trapped atom or sending in a laser beam to selectively push out (or de-excite) the atoms of contaminant isotopes.

Besides isotopic selectivity, another important characteristic is detection efficiency. The efficiency of our system depends on the discharge current, laser power, and optical alignment. At one particular setting, we measured capture rates of 85Kr, 83Kr, and 81Kr, which were (1.5 ± 0.3) × 10⁸ s⁻¹, (1.9 ± 0.3) × 10⁻² s⁻¹, and (1.3 ± 0.4) × 10⁻³ s⁻¹, respectively (23). If we assume the same detection efficiency for all three isotopes, then we get isotopic abundances of (1.5 ±

![Fig. 2. Signal of a single trapped 85Kr atom. During loading time, the photon-count rate was low because the counter was blocked for protection from overexposure.](image)

![Fig. 3. Single-atom fluorescence versus laser frequency offset. Laser frequency offset indicates detuning from the reference line. Measured photon-count rates are fitted to a Lorentzian function, rates ∝ \((1/\sigma^2) / ((f - f_0)^2 + (\gamma/2)^2)\). Here, \(f_0\) is the resonant transition frequency of 85Kr, \(f\) is the laser frequency, and \(\gamma = \Gamma(1 + \delta)^{1/2}\) is the power-broadened linewidth. We fixed \(f_0 = 87\) MHz and \(\Gamma = 5.3\) MHz according to previous spectroscopy measurements (27). The resulting saturation parameter \(\delta = 19 ± 3\). Error bars represent change in fluorescence between different atoms. We attribute the cause of large fluctuations near resonance to the fact that the atom trajectory partially extends beyond the viewing region as the trap temperature increases near resonance. This effect was also observed on 85Kr traps with a charge-coupled device camera.](image)

![Fig. 4. (A) Fluorescence of trapped 85Kr atoms versus laser frequency. Fluorescence was measured with a low-gain photodiode detector. (B and C) Number of 85Kr atoms counted versus laser frequency. Each data point represents number of atoms counted in 20 min, with 10 min each for loading and counting. Fluorescence threshold, over which an atom is counted, was set at 3 kcps (B) and 10 kcps (C).](image)
0.4) \times 10^{-11} \text{ for } ^{85}\text{Kr} \text{ and } (1.0 \pm 0.4) \times 10^{-12} \text{ for } ^{81}\text{Kr}, \text{ which are in good agreement with previous measurements using other methods (3, 8, 13). The capture efficiencies can be calibrated with enriched samples of known isotopic abundance to correct for any isotope-dependent effects and to measure isotopic importation into unknown samples. }

Our system has achieved an efficiency of 10^7. Use of this system to measure the abundance of ^{85}\text{Kr} to within 10% would require 2 hours and a krypton sample of 3 ml, whereas measurement of ^{81}\text{Kr} to within 10% would require 2 days and a sample of 60 ml. This limits the current system to atmospheric applications in which large samples of gas are readily available. It is possible to raise the efficiency many orders of magnitude through improvements such as cryogenic cooling in the discharge region (24) and recirculation of krypton gas (25). Other proposed schemes (26) with an ultraviolet (UV) laser instead of a dc discharge to excite the atoms to the metastable level via a two-photon transition could dramatically improve detection efficiency.

ATTA can be applied to many different isotopes (Table 1). Laser trapping is well established on alkali, alkali earth, and noble gas elements. Trapping other elements is generally more difficult because of both the complexity of their ground-level structures and the lack of suitable UV lasers. Some of these problems may be overcome with future advances in UV laser technology.

References and Notes
22. Metastable atoms quench upon colliding with walls; therefore, they do not exist in background as a vapor. In other applications when ground-level atoms are used, cryopanels can be installed to reduce the density of background atoms.
23. Rate calculations are based on loading time only, which is one-half of real time.

Similarity of the C. elegans Developmental Timing Protein LIN-42 to Circadian Rhythm Proteins

Mili Jeon,* Heather F. Gardner,‡ Eric A. Miller,†† Jodie Deshler,‡‡ Ann E. Rougvie1,2§

The *Caenorhabditis elegans* heterochronic genes control the relative timing and sequence of many events during postembryonic development, including the terminal differentiation of the lateral hypodermis, which occurs during the final (fourth) molt. Inactivation of the heterochronic gene lin-42 causes hypodermal terminal differentiation to occur precociously, during the third molt. LIN-42 most closely resembles the Period family of proteins from *Drosophila* and other organisms, proteins that function in another type of biological timing mechanism: the timing of circadian rhythms. *Per* mRNA levels oscillate with an approximately 24-hour periodicity. *lin-42* mRNA levels also oscillate, but with a faster rhythm; the oscillation occurs relative to the approximately 6-hour molting cycles of postembryonic development.

The timing of distinct biological processes within a cell or organism is carefully controlled. One class of temporal regulators, exemplified by the *C. elegans* heterochronic genes, times the onset of developmental events. These genes control the relative timing of diverse stage-specific events during postembryonic development such as dauer larva formation, vulva formation, and the terminal differentiation of the hypodermis (*J*). In other organisms, members of this general heterochronic gene class include the *Teopod* genes and *Glossy15* of maize, *hasty of *Arabidopsis*, and anachronism of *Drosophila* (*2*). Mutations in these genes either advance or retard expression of certain developmental programs.

A second class of temporal regulators comprises the “clock” components that regulate circadian rhythms, the approximately 24-hour periodicity of biological processes such as sleep-wake cycles in humans (*3*). Genes that control circadian rhythms have been cloned from several organisms, including *Drosophila*, *Neurospora*, and mouse. Although shared motifs have been observed between certain circadian rhythm proteins, shared motifs between these proteins and the timing factors that control developmental progression have not been reported previously. Here we demonstrate that the *C. elegans* heterochronic gene *lin-42* encodes a protein.

*Present address: Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
† Present address: Department of Biology, University of Wisconsin, River Falls, WI 54022, USA.
‡ To whom correspondence should be addressed.

Reports
10. Metastable atoms quench upon colliding with walls; therefore, they do not exist in background as a vapor. In other applications when ground-level atoms are used, cryopanels can be installed to reduce the density of background atoms.
11. Rate calculations are based on loading time only, which is one-half of real time.