Decay spectroscopy techniques to study neutron-rich fission fragments at ATLAS

Krzysztof P. Rykaczewski, Robert Grzywacz, Carl J. Gross
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6371, USA
in collaboration with
U. of Tennessee, UNIRIB, ANL, LSU, Miss. St., U. of Warsaw, INP-Krakow

MTAS = Modular Total Absorption Spectrometer
VANDLE = Versatile Array of Neutron Detectors for Low Energy
3Hen = Helium-3 Neutron Detectors
Hybrid-3Hen = 3Hen + Clover Ge

The physics of neutron-rich fission fragments
- nuclear structure evolution as N >> Z
- spectroscopy near and above the neutron separation energy
- rapid-neutron capture half-lives and beta-delayed neutron branchings
- societal impact in better data for modeling neutron-rich environments such as nuclear reactors
- more detailed understanding of the anti-neutrino spectra from reactors
Measure the complete beta-strength function

VANDLE - Neutron energies via time-of-flight

- Commissioned with beam in 2012 with nearly 30 fission fragments measured
- 48 detectors in barrel array achieve efficiency of 12% at 1 MeV; calibrated with mono-energetic neutrons at Ohio
- Used to measure neutron energies via time-of-flight (~50 cm flight path as shown); now 100 cm flight path
- Can be “hybridized” to be compatible with other detectors such as Ge - neutron feeding as high as 1 MeV in daughter
- Results indicate significant intensity of ~2 MeV neutrons (higher than expected) in the decay of some isotopes - 77Cu, 84Ga, 136Sb
- High energy neutrons indicate Gamow-Teller decay from closed neutron shell rather than first forbidden transitions

S. V. Paulauskas et al., NIM 737A, 22 (2014); UTK Dissertation: http://trace.tennessee.edu/utk_graddiss/2606/
Measure the complete beta-strength function
3Hen - 3He ionization neutron counter

- Commissioned with beam in 2012 by identifying the decay of 86Ga
- Up to 74 detectors filled with 10 atm. of 3He with efficiency of 80% between 0.001-1 MeV
- Used to count neutrons and detect the most exotic isotopes
- Can be “hybridized” (as shown - 48 detectors - eff. ~30%) and used with other detectors such as Ge and used as a gating detector
- Results revealed large 2n decay branch and strong competition between 1n (60%) and 2n (20%) emission: Miernik et al., PRL 111, 172501 (2013)
- 1-3 ions per second (RILIS) at HRIBF (RIKEN ~0.15 at 10 pnA 238U 345 MeV/u beams)

Note that $Q_\beta \sim 15$ MeV: even 3n + 83Ga channel is open

K. Miernik et al., PRL 111, 132502 (2013)
Measure the complete beta-strength function
MTAS - Modular Total Absorption Spectrometer

- Commissioned with beam in 2012 by measuring the decay of 22 isotopes - 7 highest priority of IAEA
- 19 detectors in full array achieve full energy peak efficiency of 71% at 4 MeV
- Includes segmented beta detectors with 70% efficiency
- Identifies levels in daughter nucleus fed in β-decay
- Large neutron capture signal at ~7 MeV on Na and I
- Results are used to determine the decay heat released by fission products: typically we found a 20-40% increase in average gamma energy
- Higher lying beta feeding = lower beta energies = lower anti-neutrino energies from reactors

\[Q_\beta = 5.06 \text{ MeV} \]

A. Fijalkowska et al., Nucl. Data Sheets, in press;
A. Fijalkowska, Dissertation U. Warsaw 2014-15
Measure the complete beta-strength function
LeRIBSS + CARDS - Clover Ge Array on a Low-energy Beam Line

- Commissioned with beam in the 2008
- 4 Ge detectors downstream from high-resolution mass analyzer (M/ΔM ~ 10,000)
- Can be “hybridized” and combined with other detectors
- Close geometry achieves 6% efficiency at 1.33 MeV and 34% at 81 keV
- Results expanded many decay schemes and corrected half-lives

Measured (+) and calculated r-process abundances with parameters adjusted based on our new data on $^{82-83}$Zn and 85Ga (red). The blue curve is based on unmodified parameters.
High mass resolution doesn’t do it alone

Neutron-gated γ-rays from 86Ga decay

- Attempted 2-3 times using positive and negative ions (electron beam plasma source with and without Cs charge exchange)
- Required laser ionization to suppress 86Br
- Mass difference between 86Ga and 86Br: 1945:1
- Beam intensity 86Ga/86Br 1: $>10^7$ per second

Energy losses in an ion chamber

- Molecular transport of SnS followed by break-up in the charge exchange cell
- Even with factors of $\approx 10^5$ suppression, Sb and Te remain in the beam
- Mass difference between 134Sn and 134Te: 7684:1
- Mass difference between 132Sn and 132Te: 14236

Energy losses in an ion chamber

- Beam rate $\approx 10^7$ s$^{-1}$ for 132Sn
- Beam rate 10^5 s$^{-1}$ for “sulfided” 132Sn

Projection along DE

- Beam rate 10^3 s$^{-1}$ for Sn, Te, Sb, Ba
- “sulfided” 134Sn, 134Te, 134Sb

Distribution of 134Isobars in beam varies.
Living with contaminated beams: accelerate and range-out

1 MCP provides fast timing of heavy ion beam and near 100% efficiency
1 Ionization chamber provides Z identification - 100% efficiency
2 Hemispheric plastic detectors outside vacuum chamber detects betas and removes background - efficiency:
 35-48% (β-energy dependent)
4 Clover Ge detects gamma-rays - efficiency:
 22% @ 90 keV
 8.5% @ 600 keV
 5% @ 1332 keV

Ionization chamber provides ability to adjust quickly the isobaric separator \(\rightarrow M/\Delta M \sim 4000 \)
High gas pressure ranges out high-Z ions but requires tape at window and movement to measuring station
Low gas pressure tags ions and allows implantation at measuring station
Acceleration costs intensity: factors 10-13 for acceleration; 2-\(\infty \) for charge exchange
Different gas pressure regimes

Low gas pressure (100-160 Torr)
- Identify isobars
- Measure full beam rates
- Implant at measuring point for shortest half-lives
- Small sample size possible

High gas pressure (~ 200 Torr)
- Best isotope identification
- Limit ion implantation to tape
- Adjust isobar magnet to reduce unwanted ions
- Range out the lower Z components
- Implant at window and move sample to measuring point
- Large losses unless tape positioned at exit window

Absolute values (P_n) possible with ion counting
Winger et al., PRL 102, 142502 (2009)
Experimental hall requirements based on largest equipment

VANDLE
- Assume beam height at least 1.25 meters
- VANDLE barrel has 1 meter time-of-flight so ~2 meters on either side of beam line
- VANDLE prefers to be far away from concrete and other materials that scatter neutrons

MTAS
- Array and shielding weighs approximately 7 tons.
- Although on wheels path to experimental hall should not have stairs, trench coverings, etc.
- Shielding is ~2.5 meters long. Since the tape extends all the way through array and shielding, similar amount of room is necessary behind MTAS

Ranging out accelerated line (use depends on beam purity)
- Same as the low energy hall with a little extra length to accommodate ion chamber upstream

Beam conditions
- DC or nearly so
- Beam deflector - time (seconds) variable
- Constant energy, low emittance
- Although not necessary, 300+ keV beams could be appealing for implantation timing on sub-200 ms activities
- Multiple techniques for enhanced purity beams
- Small circular beam sizes (1-2 mm radius)
- User access to small step changes of isobar settings

Consider multiple beam lines - can a beam deflector be used to serve 2 experiments at once?