CHICO2 – A pixelated PPAC

ATLAS Users Meeting 2014

May 15, 2014
Acknowledgement

- Upgrade funded by DOE/SC/NP
- Collaboration between U. of Rochester and LLNL
- D. Cline and A. Hayes (U. of Rochester)
- I.Y. Lee (LBNL)
- B. DiGiovine, J. Anderson (ANL)
- D. Swan (Swan Research LLC)
- R. Fox (CAEN)
CHICO and Gammasphere

- CHICO (Compact Heavy Ion COunter) developed at U. of Rochester in 1994 – 1996, under NSF funding. [M. Simon et al, NIM A452, 205 (2000)]

- Designed as an auxiliary charged-particle detector for Gammasphere with a solid-angle coverage of 69% of 4π.

- 26 experiments fielded over a decade, involving 58 experimentalists from 17 institutions, which results in 37 publications and 5 Ph.D.’s
Gammasphere/CHICO at ANL, 2008

Gammasphere/CHICO setup

178Hf on 208Pb at $E_{\text{lab}} = 984$ MeV

TOF vs scattering angle

Doppler-shift corrected γ spectrum
CHICO2

- Angular resolution of CHICO improved to $\sim 1^\circ$ in both θ and ϕ coordinates, matching those of GRETINA by pixelating the position-sensing plate.
- Position determination not by the location of pixel but by the delay-line readout technique, which reduces the readout to 100 instead of 14,780 channels.
- Funded in FY10 and completed by the end of 2012.
- Excellent uniformity and linearity is achieved during the testing phase.
 - Improving the γ-ray energy resolution by a factor of 2 - 3.
CHICO2 – Early planning
VME based electronics design

GRETINA
- Anode (20)
 - 500 MHz Bandwidth
 - Gain of 200

CHICO2
- Cathode (80)
 - 500 MHz Bandwidth
 - Gain of 800

QDC (CAEN V792)
- 32-channel; 400 pC

TDC (CAEN V1190A)
- 128-channel; 100 ps res

Logic/Trig (CAEN V1495)
- Customisable FPGA

Scaler (CAEN FW1495SC)
- 128-channel; 270 MHz

TDC (CAEN V1190A)
- 128-channel; 100 ps res
Firmware diagram
Experimental results

- Octupole collectivity in 144Ba
 - ~ 500 pps 144Ba on 2 mg/cm2 208Pb target for 36 hrs
 - Excited states with spin up to 8^+ was observed

Courtesy of S.F. Zhu
GRETINA/CHICO2 at ANL, 2014
GRETINA/CHICO2 at ANL, 2014
CHICO2 test with a 252Cf source

ToF difference vs scattering angle (uncalibrated)

Derived mass spectrum

Courtesy of S.F. Zhu
76Ge; first GRETINA/CHICO2 experiment

- 318 MeV 76Ge on 0.5 mg/cm² 208Pb
- Particle single rate up to 500 k/s for the scattering angle between 20° and 80°
- ~ 100 M p-γ events collected in ~ 36 hrs
- γ-ray energy resolution < 0.78%; work still in progress

Courtesy of M. Albers
\(^{144}\text{Ba}; \text{CARIBU/GRETINA/CHICO2}\)

- 650 MeV \(^{144}\text{Ba}\) on 1.0 mg/cm\(^2\) \(^{208}\text{Pb}\)
- Particle single rate up to > 1000 s for the scattering angle between 20\(^\circ\) and 80\(^\circ\)

TOF Difference

Scattering angle (degree)

Counts

E\(_\gamma\) (keV)

Courtesy of M. Albers
Summary

- CHICO2 has been successfully integrated into (Digital)Gammasphere and GRETINA.
 - It has reached the position resolution as designed;
 - $0.7^\circ (\sigma)$ for θ and 1.4° for ϕ

- Current status of GRETINA/CHICO2
 - Coulomb excitation of 72Ge and 76Ge was complete
 - Coulomb excitation of 144Ba is ongoing
 - Coulomb excitation of 146Ba is scheduled