The Apollo γ-ray array for HELIOS

Experiment development:

Nuclear reaction and mass models:
T. Kawano, P. Talou and P. Möller (T2)

Supernova modeling:
C. Fryer, A. Hungerford, and G. Rockefeller (CCS, XTD)

ATLAS Users Meeting on May 15-16 2014
Addition of gamma detection for transfer reactions expands physics output

Prediction of neutron capture rates can be improved by studying
Level densities
γ-ray decay schemes
γ-ray multiplicities
Photon strength function

Design goals:
1. highest detection efficiency with segmentation
2. Operate inside HELIOS – 3 T magnetic field and vacuum
3. portable
Segmented γ-ray detector array

Ideal:
tapered 20 hexagons and 6 pentagons as a closely-packed geometry

Realistic solid angle coverage:
1. 26-cylinder geometry covering about one π
2. 2 inch in diameter and 3 inch long
3. 15 CsI(Tl) scintillators and 6 LaBr$_3$(Ce) scintillators
4. Customized light readout was required
Light readout under magnetic field

Sensl-silicon photomultiplier (SPM)

1. 36 X 36 mm² pixelated avalanche photodiodes
2. Used the wavelength shift paint for BrilLanCe380 ($\lambda = 380$ nm), since quantum efficiency (QE) peaks at $\lambda = 550$ nm, optimized for CsI(Tl)
3. SPM + power supply + preamplifier was provided by Sensl
Apollo array: measured energy resolution and efficiency

Above 1 MeV, the resolution is less than 4%

Measured γ-ray energy spectrum of 133Ba source shows a good separation of 50 keV at 300 keV

Apollo peak efficiency is measured to be about 15% at 1 MeV
Apollo is implemented inside HELIOS

Successful commissioning experiment of the APOLLO array in Jan. 2013 for performing in vacuum and under the magnetic field with γ-ray sources
First beam test at ANL: $d(^{17}\text{O},p\gamma)^{18}\text{O}$

Proton groups detected by Position Sensitive Silicon array in HELIOS

γ-ray decay transitions observed by APOLLO in coincidence with the excited states of ^{18}O.

Proton Lab Energy (MeV)

Distance from the target (arb. Unit)

^{22}Na source decay

Energy (keV)
Further improvements can be done

Energy resolution
1. Sensl has developed the shorter wavelenth SPM ($\lambda_{\text{peak}} = 420$ nm)
2. Shorter shaping time or baseline restoration using digital filters.
3. Replace CsI(Tl) with LaBr$_3$(Ce)

Efficiency
Closely packed geometry

Flexibility
1. Implementation with digital electronics
2. Coupled with other instruments
Path Forward

We have developed the APOLLO array to measure γ-rays in coincidence with transfer reactions for exploring the nuclear properties off the stability.

Currently the stable 136Xe beam time has been scheduled in June 2014 in order to test the system with heavy beams. Upon the success of this, planning to expand to unstable isotopes.
Extras
Details

- **Timing** -- Sensl is sensitive to this issue
 - Best results have been achieved using digital filters
- **Total cost**:
 - $150 k for Sensl for 30 modules, including R&D
 - Now $2k for only SPM
 - LaBr3(Ce) - $13k for 2X2 LaBr3 $17k for 2X3
Digital signal processing: digital filter

- 22Na calibration source was used.
- After the peaks are detected, the waveform is integrated over 5 μs.
How to tie this γ-ray data with Monte-Carlo Hauser-Feshbach calculation?

We have demonstrated how to deduce nuclear properties using Monte-Carlo Hauser-Feshbach code (MCHF) with DANCE data at LANSCE

43Ca(n,γ) measurement at LANSCE: $E_R = 5.18$keV (3$^-$)

RED : DANCE data, BLUE : MCHF + GEANT4 simulation
How to tie this γ-ray data with Monte-Carlo Hauser-Feshbach calculation?

Nuclear properties are deduced using Monte-Carlo Hauser-Feshbach code (MCHF) with DANCE 238U(n,γ) data at LANSCE

2-step γ-ray cascade shows better fit with M1 strength

Better nuclear input feeds

Calculated MCHF cross section is improved

Ullmann et al.
PRC (2014)