Beta decay of ³²Ar for fundamental tests

Chris Wrede University of Washington

Argonne-ATLAS user meeting August 8th, 2009

Outline

- 1999 measurement of positron-neutrino correlation in ³²Ar(*e*⁺ nu_e): ISOL facility (CERN-ISOLDE)
- 2008 measurement the *ft* value for superallowed ³²Ar(*e*⁺ nu_e) decay to test isospin symmetry breaking corrections: fragmentation facility (MSU-NSCL)
- Where does ATLAS fit in to this? A bridge from stability to ³²Ar!

Detecting scalar currents in weak decays

The e-v correlation depends strongly on the nature of the carrier (we take a $0^+ \rightarrow 0^+$ transition).

 $dW/d\Omega = 1 + \mathbf{p}_{e}\mathbf{p}_{v}/\mathsf{E}_{e}\;\mathsf{E}_{v}$

 $dW/d\Omega = 1 - \mathbf{p}_e \mathbf{p}_v / \mathbf{E}_e \mathbf{E}_v$

-15 - 10 - 5

 $E - E_0$ (keV)

Problem: Summing with positrons distorts the shape of the proton peak

Simultaneous fit of ³²Ar and ³³Ar data

1999 result: ã=0.9980(52)_{stat}(39)_{syst} [Adelberger *et al.*, PRL 83 (1999) 1299]

But, since then...

- Precision measurement of ³²S(p,p)³²S 3374.7keV resonance energy [Pyle *et al.* PRL 88, 122501 (2002)]
- Precision measurement of ³²Ar mass [Blaum et al., PRL 91, 260801 (2003)]
- Precision determination of the mass of the lowest T=2 level in ³²Cl via precision measurement of ³¹S mass [CPT collaboration, to be submitted]
- All of these change a substantially!

T=2 nuclei present an alternative way to check

Isospin breaking corrections

Bhattacharya et al., PRC 77, 065503 (2008)

V_{ud} from superallowed 0+=>0+ beta decay

- Determining ft value requires precision measurements of Q value, $t_{1/2}$, and superallowed branching
- Extracting corrected *Ft* from *ft* requires radiative and isospin-symmetry-breaking corrections
- Measurements on *T*=1 decays are so precise that correction terms now dominate uncertainty in the average *Ft*, which determines V_{ud}
- Need to test theoretical corrections by experiment: eg. test delta_C for *T*=2 ³²Ar

$$\mathcal{F}t \equiv ft(1-\delta_C)(1+\delta_R)$$

Experiment to determine branch of ³²Ar super-allowed transition (MSU)

Summary of super-allowed ³²Ar branches:

		Systematic uncertainties		
$\frac{N_p}{N} = \frac{N_{p0}}{N} (1 + \frac{N_{p1}}{N} + \frac{N_{p2}}{N})$	-) = 20.9(1)%	Component	b(%)	
$ \frac{1}{\alpha} Ar = \frac{1}{\alpha} \frac{Ar}{Ar} = \frac{1}{p0} \frac{p0}{p0} $		implt. ³² Ar's	0.2	
from spectrum	p0 branch	0.5		
$\sum N_{\gamma}(i)$	03(10)%	p1 branch	0.04	
$\frac{i}{N} = \frac{i}{N \sum c_i(i)c_i} = 2.03$		p2 branch	0.04	
$\frac{1}{Ar} \frac{1}{i} 1$		p3 branch	0.07	
from ³² Cl	gamma branch	0.4		
Isospin-breaking correction:		other	0.01	
Measurement:	$\delta_c^{exp} = 2.1(8)\%$			
Theory:	$\delta_c^{th} = 2.0(4)\%$			

But, results are dependent on...

- Absolute gamma-ray branchings from ³²Cl(beta gamma)³²S: measured separately [Melconian *et al.*, to be submitted]
- Results of the lepton-correlation experiment described previously [Adelberger et al. PRL 83 (1999) 1299], which are in turn strongly dependent on quantities that are still being measured!

An idea to determine lepton correlations and particle branches with high precision to be used with FRIB

In the longer range this device can be used in FRIB to produce useful standards for calibration of particle branches and as a spectroscopic tool.

Where does ATLAS fit in to this?

- In this mass region and below ATLAS has unique capabilities (eg CPT & Gammasphere) to obtain precision data on nuclides 1 or 2 nucleons from stability on the proton-rich side
- Would be very useful if this information were more complete before other precision decay studies on *T*=2 nuclides commence
- Request that ATLAS PAC take into consideration proposed measurements of unstable nuclides near stability that utilize ATLAS's unique capabilities simply to "fill in" detailed information about these nuclides and facilitate future precision experiments at FRIB

32K	33K	34K	35K	36K	37K
31Ar	32Ar	33Ar	34Ar	35Ar	36Ar
30C1	31Cl	32C1	33C1	34C1	35Cl
295	305	315	325	335	345
28P	29P	30P	31P	32P	33P
27 Si	28Si	29Si	30Si	31 <i>S</i> i	32Si

Thank you!