Nuclear Reaction Theory: concepts and applications – Part I

Exotic Beams Summer School 2012, Argonne National Laboratory, 5th – 9th August 2012

Jeff Tostevin, NSCL, MSU, East Lansing, MI and Department of Physics, Faculty of Engineering and Physical Sciences University of Surrey, UK
100 years of nuclei – scattering was critical

LXXIX. The Scattering of α and β Particles by Matter and the Structure of the Atom. By Professor E. Rutherford, F.R.S., University of Manchester*.

§ 1. IT is well known that the α and β particles suffer deflections from their rectilinear paths by encounters with atoms of matter. This scattering is far more marked for the β than for the α particle on account of the much smaller momentum and energy of the former. There seems to be no doubt that such swiftly moving particles pass through the atoms in their path, and the deflections observed are due to the strong electric fields traversed within the atomic system. It has ge...
There are several good reaction theory texts: e.g.

Direct nuclear reaction theories (Wiley, Interscience monographs and texts in physics and astronomy, v. 25) Norman Austern

Direct Nuclear Reactions (Oxford University Press, International Series of Monographs on Physics, 856 pages) G R Satchler

Direct Nuclear Reactions (World Scientific Publishing, 396 pages) Norman K. Glendenning

Introduction to Nuclear Reactions (Taylor & Francis, Graduate Student Series in Physics, 515 pages) C A Bertulani, P Danielewicz

Theoretical Nuclear Physics: Nuclear Reactions (Wiley Classics Library, 1938 pages) Herman Feshbach

Introduction to Nuclear Reactions (Oxford University Press, 332 pages) G R Satchler

Nuclear Reactions for Astrophysics (Cambridge University Press, 2010) Ian Thompson and Filomena Nunes
Some other notes/resources available at:

http://www.nucleartheory.net/DTP_material

Please let me know if there are problems.

EBSS 2011 at NSCL: Ian Thompson
Lawrence Livermore National Laboratory
Nuclear Reactions (Theory)
Read introduction to Thompson lectures 2011 …
… for a discussion of the characteristics of direct (fast) and compound (massive energy sharing) nuclear reactions.

Direct reactions: Reactions in which nuclei make glancing contact and then separate immediately. Projectile may exchange some energy and / or angular momentum, or have one or more nucleons transferred to it or removed from it.

Direct reactions: take place at/near the nuclear surface and at larger impact parameters

Direct reaction products tend to be strongly forward peaked as projectile continues to move in general forward direction

Direct reactions take place on a short timescale (we will quantify) – a timescale that reduces with increasing energy of the projectile beam (and that allows extra approximations)

Direct reaction clock has ticks in units of $\sim 10^{-22}$ s – timescale for a nucleon’s motion across in a typical nucleus
Single-particle aspects of structure from reactions

\[\ell, s = 1/2 \]

\[j_\leq = \ell - 1/2 \]

\[j_\geq = \ell + 1/2 \]

\[V_{\ell s}(r) \vec{\ell} \cdot \vec{s} \]

\[V(r) + V_{so}(r) \vec{\ell} \cdot \vec{s} \]

\[V_{so}(r) < 0 \]
Reaction timescales – surface grazing collisions

For say 10 and 100 MeV/u incident energy:

$$\gamma = 1.01, \quad v/c = 0.14, \quad \gamma = 1.1, \quad v/c = 0.42,$$

$$\Delta t = 2.4 \times d \times 10^{-23} s, \quad \Delta t = 7.9 \times d \times 10^{-24} s$$

$\text{d}<\text{nuclear diameter (a few fm)}$ – unless strong Coulomb effects are an important factor in the collisions of interest
First session aims:

To discuss: 1. solutions of the Schrödinger equation for states of two bodies with specific quantum numbers over a wide range of energies – the need for bound, resonant, continuum (and continuum bin) states.

2. The form of these two-body problem solutions at large separations and their relationships to nuclear structure, absorption, reaction and scattering observables.

3. Stress constraints on two-body potentials and their parameters. Parameter conventions. The need to cross reference to known nuclear structures, resonances, nuclear sizes and experiment whenever possible in constraining parameter choices for calculations.
Underpinnings of direct reaction methods

Solutions of Schrödinger’s equation for (pairs of) nuclei interacting via a potential energy function of the form:

\[U(r) = V_C(r) + V(r) + V_{so}(r)\vec{l} \cdot \vec{s} \]

- **Coulomb**
- **Nuclear**

Need descriptions of wave functions of:

1. **Bound states** of nucleons or clusters (valence particles) to a core (that is assumed for now to have spin zero).
2. **Unbound** scattering or resonant states at low energy.
3. **Distorted waves** for such bodies in complex potentials

\[U(r) = V_C(r) + V(r) + iW(r) + V_{so}(r)\vec{l} \cdot \vec{s} \]

Additional, e.g. tensor terms, when s=1 or greater neglected
Direct reactions – types and characteristics

Capture

\[\phi^m_{k\ell j}(\vec{r}) \]

Inelastic excitations (bound to bound states) e.g. DWBA

\[\phi^m_{n\ell j}(\vec{r}) \]
\[\chi_{\vec{k},\sigma}(\vec{R}) \]
\[\phi^{m'}_{n'\ell' j'}(\vec{r}) \]

Target
Direct reactions – types and characteristics

Inelastic excitations (breakup)

\[
\phi_{n\ell j}^m (\vec{r}) \xrightarrow{\chi_{\vec{k}, m}} \chi_{\vec{k}, v, \sigma_v}
\]

Transfer reactions

\[
\phi_{n_i \ell_i j_i}^{m_i} (\vec{r}) \xrightarrow{\chi_{\vec{k}, m_i}} \chi_{\vec{k}, v, \sigma_v}
\]

\[
\phi_{n_f \ell_f j_f}^{m_f} (\vec{r}) \xrightarrow{\chi_{\vec{k}, m_f}} \chi_{\vec{k}, v, \sigma_v}
\]
Direct reactions – requirements (1)

Description of wave functions of **bound** systems (both nucleons or clusters) – (a) can take from structure theory, if available or, (b) more usually, use a **real potential** model to bind system with the required experimental separation energy.

Refer to **core** and valence particles

\[
U(r) = V_C(r) + V(r) + V_{so}(r) \vec{\ell} \cdot \vec{s}
\]

\[
\phi_{n\ell j}^m(\vec{r}) = \sum_{\lambda \sigma} (\ell \lambda s \sigma | j m) \frac{u_{n\ell j}(r)}{r} Y_{\ell}^\lambda(\hat{r}) \chi_{s}^\sigma, \quad \int_0^\infty [u_{n\ell j}(r)]^2 dr = 1
\]

Usually just one or a few such states are needed.

Separation energies/Q-values: many sites, e.g.

Bound states – real potentials

\[U(r) = V_C(r) + V(r) + V_{so}(r) \ell \cdot s \]

\[V(r) = -\frac{V_R}{1 + \exp(X_R)} , \quad X_R = \frac{r - R_R}{a_R} \]
Bound states potential parameters - nucleons

\[U(r) = V_C(r) + V(r) + V_{so}(r) \vec{l} \cdot \vec{s} \]

\[V(r) = -\frac{V_R}{[1 + \exp(X_R)]}, \quad X_i = \frac{r - R_i}{a_i} \]

\[V_{so}(r) = -\frac{4 V_{so}}{r a_{so}} \frac{\exp(X_{so})}{[1 + \exp(X_{so})]^2}, \]

\[R_i = r_i A_c^{1/3} \]

\[r_R = r_C = r_{so} \approx 1.25 \text{fm} \]

\[a_R = a_{so} \approx 0.7 \text{fm} \quad V_{so} = 6 \text{MeV} \]
Bound states – single particle quantum numbers

\[\ell, s = \frac{1}{2} \]

\[j_< = \ell - \frac{1}{2} \]

\[j_> = \ell + \frac{1}{2} \]

24O?

\[V_{\ell s}(r) \vec{\ell} \cdot \vec{s} \]

\[V(r) + V_{so}(r) \vec{\ell} \cdot \vec{s} \]

\[V_{so}(r) < 0 \]
Bound states – for nucleons - conventions

With this potential, and using sensible parameters, we will obtain the independent-particle shell model level orderings, shell closures with spin-orbit splitting.

NB: In diagram $2d_{5/2}$ means the second $d_{5/2}$ state. Defined this way, $n>0$ and $n-1$ is the number of nodes in the radial wave function. Reaction codes can ask for n, or $n-1$ (the actual number of nodes). Care is needed.
Bound states – can also use mean field information

INPUT VALUES

* IA,IZ = 24 8 *

**** Neutron bound state results ****

\[
\begin{array}{cccccc}
\text{k n l j e} & \text{IE} & \text{OCC} \\
1 & 1 & s & 1/2 & -26.757 & 1 & 2.00 & 36.70 & 35.28 \\
2 & 1 & p & 3/2 & -16.883 & 1 & 4.00 & 36.70 & 35.80 \\
3 & 1 & p & 1/2 & -12.396 & 1 & 2.00 & 36.70 & 36.04 \\
4 & 1 & d & 5/2 & -6.166 & 1 & 6.00 & 36.70 & 36.37 \\
5 & 1 & d & 3/2 & 0.109 & 1 & 0.00 & 36.70 & 36.69 \\
6 & 2 & s & 1/2 & -3.360 & 1 & 2.00 & 36.70 & 36.52 \\
7 & 1 & f & 7/2 & 0.200 & 3 & 0.00 & 46.02 & 46.01 \\
8 & 1 & f & 5/2 & 0.200 & 3 & 0.00 & 60.56 & 60.55 \\
9 & 2 & p & 3/2 & 0.200 & 3 & 0.00 & 48.10 & 48.09 \\
\end{array}
\]

**** Neutron single-particle radii ****

\[
\begin{array}{ccccccc}
\text{R(2)} & \text{R(4)} & \text{OCC} & \text{rho(8.9)} & \text{rho(9.9)} & \text{rho(10.9)} \\
1 & 1 & s & 1/2 & 2.274 & 2.575 & 2.000 & 0.848E-09 & 0.706E-10 & 0.600E-11 \\
2 & 1 & p & 3/2 & 2.863 & 3.133 & 4.000 & 0.188E-07 & 0.244E-08 & 0.325E-09 \\
3 & 1 & p & 1/2 & 2.954 & 3.268 & 2.000 & 0.727E-07 & 0.122E-07 & 0.210E-08 \\
4 & 1 & d & 5/2 & 3.434 & 3.757 & 6.000 & 0.524E-06 & 0.129E-06 & 0.327E-07 \\
5 & 1 & d & 3/2 & 4.662 & 6.063 & 0.000 & 0.131E-04 & 0.675E-05 & 0.371E-05 \\
6 & 2 & s & 1/2 & 4.172 & 4.895 & 2.000 & 0.769E-05 & 0.278E-05 & 0.102E-05 \\
7 & 1 & f & 7/2 & 3.865 & 4.440 & 0.000 & 0.324E-05 & 0.134E-05 & 0.600E-06 \\
8 & 1 & f & 5/2 & 3.890 & 4.477 & 0.000 & 0.341E-05 & 0.141E-05 & 0.631E-06 \\
9 & 2 & p & 3/2 & 6.815 & 8.635 & 0.000 & 0.451E-04 & 0.270E-04 & 0.167E-04 \\
\end{array}
\]

But must make small corrections as HF is a fixed centre calculation

\[
\langle r^2 \rangle = \frac{A}{A-1} \langle r^2 \rangle_{HF}
\]
Direct reactions – requirements (2)

Description of wave functions for unbound (often light) systems (nucleons or clusters) with low relative energy:
Usually have low nuclear level density of isolated resonances. Use the same real potential model as binds the system \(\rightarrow \) scattering wave functions in this potential. (Also ‘bin’ wave functions)

\[6\text{Li} (\alpha+d) \]

\[U(r) = V_C(r) + V(r) + V_{so}(r) \vec{\ell} \cdot \vec{s} \]

\[\phi_{k\ell j}^m(r) = \sum_{\lambda \sigma} (\ell \lambda s \sigma | jm) \frac{u_{k\ell j}(r)}{kr} Y^\lambda(\hat{r}) \chi^\sigma_s \]
Completeness and orthogonality - technical point

Given a fixed two-body Hamiltonian

\[H = T + U(r) = T + V_C(r) + V(r) + V_{so}(r) \vec{\ell} \cdot \vec{s} \]

the set of all of the bound and unbound wave functions

\[\{ \phi_{n\ell j}^m(\vec{r}), \phi_{k\ell j}^m(\vec{r}) \} \]

form a complete and orthogonal set, and specifically

\[\langle \phi_{n\ell j}^m(\vec{r}) | \phi_{k\ell j}^m(\vec{r}) \rangle = 0 \]

When including both bound to unbound states it is essential to use a fixed Hamiltonian for both the bound and unbound states (in each \(\ell j \) channel) else we lose the orthogonality and the states will couple even without any perturbation or interactions with a reaction target.
Direct reactions – requirements (3)

Description of wave functions for scattering of nucleons or clusters from a heavier target and/or at higher energies: (a) high nuclear level density and broad overlapping resonances, (b) many open reaction channels, inelasticity and absorption. Use a complex (absorptive) optical model potential – from theory or ‘simply’ fitted to a body of elastic scattering data for a system and energy near that of interest.

Distorted waves:

\[
\chi_{k,\sigma}(\vec{r})
\]

\[
\begin{align*}
U(r) &= V_C(r) + V(R) + iW(r) + V_{so}(r) \vec{l} \cdot \vec{s} \\
\end{align*}
\]
Optical potentials – the role of the imaginary part

$$\psi(x) = e^{ikx}$$

$$\bar{\psi}(x) = e^{i\bar{k}x}$$

$$k^2 = \frac{2\mu}{\hbar^2}(E + V_0)$$

$$\bar{k}^2 = \frac{2\mu}{\hbar^2}(E + V_0 + iW_0)$$

$$\bar{k} = k \left[1 + \frac{iW_0}{E + V_0} \right]^{1/2} \approx k \left[1 + \frac{iW_0}{2(E + V_0)} \right], \quad W_0 \ll E, V_0$$

So, for $W_0 > 0$, $\bar{k} = k + ik_i/2$, $k_i = kW_0/(E + V_0) > 0$,

$$\bar{\psi}(x) = e^{i\bar{k}x} = e^{ikx} e^{-\frac{1}{2}k_i x}, \quad |\bar{\psi}(x)|^2 = e^{-k_i x}$$
The Schrödinger equation (1)

So, using usual notation

\[
\left(-\frac{\hbar^2}{2\mu} \nabla_r^2 + U(r) - E_{cm} \right) \phi_{\ell j}^m(\vec{r}) = 0, \quad \mu = \frac{m_cm_v}{m_c + m_v}
\]

and defining

\[
\phi_{\ell j}^m(\vec{r}) = \sum_{\lambda\sigma}(\ell s \sigma | j m) \frac{u_{\ell j}(r)}{r} Y^\lambda(\hat{r}) \chi^\sigma_s
\]

\[
\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} + \frac{2\mu}{\hbar^2} [E_{cm} - U_{\ell j}(r)] \right) u_{\ell j}(r) = 0
\]

bound states \(E_{cm} < 0 \) scattering states \(E_{cm} > 0 \)

With

\[
U(r) = V_C(r) + V(r) + iW(r) + V_{so}(r) \vec{l} \cdot \vec{s}
\]

\[
U_{\ell j}(r) = V_C(r) + V(r) + iW(r) + V_{so}(r) [j(j + 1) - \ell(\ell + 1) - s(s + 1)]/2
\]
The Schrödinger equation (2)

Must solve

\[
\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} + \frac{2\mu}{\hbar^2} [E_{cm} - U_{\ell j}(r)] \right) u_{\ell j}(r) = 0
\]

bound states \quad E_{cm} < 0 \quad \kappa_b = \sqrt{\frac{2\mu |E_{cm}|}{\hbar^2}}

\[
\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} - \frac{2\mu}{\hbar^2} U_{\ell j}(r) - \kappa_b^2 \right) u_{n\ell j}(r) = 0
\]

Discrete spectrum

scattering states \quad E_{cm} > 0 \quad k = \sqrt{\frac{2\mu E_{cm}}{\hbar^2}}

\[
\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} - \frac{2\mu}{\hbar^2} U_{\ell j}(r) + k^2 \right) u_{k\ell j}(r) = 0
\]

Continuous spectrum
Large r: The Asymptotic Normalisation Coefficient

Bound states

\[E_{cm} < 0 \quad \kappa_b = \sqrt{\frac{2\mu |E_{cm}|}{\hbar^2}} \]

\[\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} - \frac{2\mu}{\hbar^2} U_{\ell j}(r) - \kappa_b^2 \right) u_{n\ell j}(r) = 0 \]

but beyond the range of the nuclear forces, then

\[\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} - \frac{2\eta_b\kappa_b}{r} - \kappa_b^2 \right) u_{n\ell j}(r) = 0, \quad \eta_b = \frac{\mu Z_c Z_v e^2}{\hbar \kappa_b} \]

\[u_{n\ell j}(r) \rightarrow C_{\ell j} W_{-\eta_b, \ell + 1/2}(2\kappa_b r) \rightarrow C_{\ell j} \exp(-\kappa_b r) \quad r \rightarrow \infty \]

ANC completely determines the wave function outside of the range of the nuclear potential – only requirement if a reaction probes only these radii.
Large r: The phase shift and partial wave S-matrix

\[E_{cm} > 0 \quad k = \sqrt{\frac{2\mu E_{cm}}{\hbar^2}} \]

\[\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} - \frac{2\mu}{\hbar^2} U_{\ell j}(r) + k^2 \right) u_{k\ell j}(r) = 0 \]

and beyond the range of the nuclear forces, then

\[\left(\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} - \frac{2\eta k}{r} + k^2 \right) u_{k\ell j}(r) = 0, \quad \eta = \frac{\mu Z_c Z_v e^2}{\hbar k} \]

\[F_{\ell}(\eta, kr), \ G_{\ell}(\eta, kr) \] regular and irregular Coulomb functions

\[
\begin{align*}
u_{k\ell j}(r) & \rightarrow e^{i\delta_{\ell j}} [\cos \delta_{\ell j} F_{\ell}(\eta, kr) + \sin \delta_{\ell j} G_{\ell}(\eta, kr)] \\
& \rightarrow (i/2) [H_{\ell}^{(-)}(\eta, kr) - S_{\ell j} H_{\ell}^{(+)}(\eta, kr)]
\end{align*}
\]

\[H_{\ell}^{(\pm)}(\eta, kr) = G_{\ell}(\eta, kr) \pm iF_{\ell}(\eta, kr) \]
Phase shift and partial wave S-matrix

If $U(r)$ is real, the phase shifts $\delta_{\ell j}$ are real, and [...] also

\[u_{k\ell j}(r) \rightarrow e^{i\delta_{\ell j}} [\cos \delta_{\ell j} F_{\ell}(\eta, kr) + \sin \delta_{\ell j} G_{\ell}(\eta, kr)] \]

\[S_{\ell j} = e^{2i\delta_{\ell j}} \]

Ingoing waves

outgoing waves

|\[S_{\ell j} \]|^2 survival probability in the scattering

\((1 - |S_{\ell j}|^2) \) absorption probability in the scattering

Having calculated the phase shifts and the partial wave S-matrix elements we can then compute all scattering observables for this energy and potential (but later).
S-matrix with absorption

\[u_{k\ell j}(r) \rightarrow (i/2)[H_{\ell}^{(-)} - S_{\ell j}H_{\ell}^{(+)}] \]
Ingoing and outgoing waves amplitudes

\[u_{k\ell j}(r) \rightarrow (i/2) \left[1 H_{\ell}^{(-)} - S_{\ell j} H_{\ell}^{(+)} \right] \]
Phase shifts and S-matrix: Resonant behaviour

In real potentials, at low energies, the combination of an attractive nuclear, repulsive Coulomb and centrifugal terms can lead to potential pockets and resonant behaviour – the system being able to trapped in the pocket for some (life)time τ.

$$\frac{\hbar^2 \ell(\ell + 1)}{2\mu r^2} + U_{\ell j}(r)$$
Potential pockets can lead to resonant behaviour – the system being able to trapped in the pocket for some (life)time τ.

A signal is the rise of the phase shift through 90 degrees.

Potential parameters should describe any known resonances.
Bound states – spectroscopic factors

In a potential model it is natural to define normalised bound state wave functions.

\[
\phi_{nljm}^m(\vec{r}) = \sum_{\lambda\sigma} (\ell\lambda s\sigma | jm) \frac{u_{nlj}(r)}{r} Y^\lambda_{\ell}(\vec{r}) \chi^{\sigma},
\]

\[
\int_0^\infty [u_{nlj}(r)]^2 dr = 1
\]

The potential model wave function approximates the overlap function of the A and A–1 body wave functions (A and A–n in the case of an n-body cluster) i.e. the overlap

\[
\langle \ell j, \vec{r}, A^{-1} X(J_f^\pi) | A Y(J_i^\pi) \rangle \rightarrow I_{\ell j}(r), \quad \int_0^\infty [I_{\ell j}(r)]^2 dr = S(J_i, J_f \ell j)
\]

\[
S(\ldots) \text{ is the spectroscopic factor} \leftarrow \text{a structure calculation}
\]
Bound states – microscopic overlaps

\[\langle \vec{r}, ^8\text{Li}(3^+) | ^9\text{Be}(3/2^-, \text{g.s.}) \rangle \]

\[S_p = 19.143 \text{ MeV} \]

Normalised bound state in Woods-Saxon potential well \(x (0.23)^{1/2} \)

Spectroscopic factor

Microscopic overlap from Argonne 9- and 8-body wave functions (Bob Wiringa et al.) Available for a few cases

Normalised bound state in Woods-Saxon potential well \(r_V = r_{so} = \text{fitted}, \ a_V = a_{so} = \text{fitted}, \ V_{so} = 6.0 \)
Bound states – shell model overlaps

\[\langle \vec{r}, {}^{25}\text{Ne}(5/2^+, E^*) | {}^{26}\text{Ne}(0^+, \text{g.s.}) \rangle \]

USDA sd-shell model overlap from e.g. OXBASH (Alex Brown et al.). Provides spectroscopic factors but not the bound state radial wave function.

--- core state --- - overlap state - ---

<table>
<thead>
<tr>
<th>2j2t</th>
<th>p</th>
<th>n</th>
<th>e</th>
<th>2j2t</th>
<th>p</th>
<th>n</th>
<th>e</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>1</td>
<td>0.000</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>1.79039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>2</td>
<td>3.756</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.02316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>3</td>
<td>4.799</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.01084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>4</td>
<td>5.631</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.00012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>5</td>
<td>6.022</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.000589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>6</td>
<td>6.504</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.000044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>7</td>
<td>6.796</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.000002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>8</td>
<td>8.034</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.000006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>9</td>
<td>8.186</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.000097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7+</td>
<td>10</td>
<td>8.398</td>
<td>0 6+</td>
<td>1</td>
<td>0.000</td>
<td>0.00006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

total = 1.83196
centroid = 0.102 **centroids** = 0.000
centroid = -22.313 **centroids** = -22.211
Optical potentials - parameter conventions

\[U(r) = V_C(r) + V(r) + iW(r) + V_{so}(r) \hat{\ell} \cdot \vec{s} \]

\[V(r) = - \frac{V_R}{1 + \exp(X_R)} \] \[X_i = \frac{r - R_i}{a_i} \]

\[V_{so}(r) = - \frac{4V_{so}}{r a_{so} [1 + \exp(X_{so})]^2} \] \[\text{usual conventions} \]

\[W(r) = - \frac{W_V}{1 + \exp(X_V)} - \frac{4W_S \exp(X_S)}{[1 + \exp(X_S)]^2} \]

\[R_i = r_i A_2^{1/3} \quad \text{or} \quad R_i = r_i \left[A_1^{1/3} + A_2^{1/3} \right] \]
Ingoing and outgoing waves amplitudes

\[u_{k\ell j}(r) \rightarrow (i/2)[\mathbf{1} H_{\ell}^{(-)} - S_{\ell j} H_{\ell}^{(+)}) \]
Barrier passing models of fusion

An imaginary part in $U(r)$, at short distances, can be included to absorb all flux that passes over or through the barrier – assumed to result in fusion.

$\sigma(E) = \sum_{\ell=0}^{\infty} \sigma_{\ell}(E) = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell + 1)(1 - |S_{\ell}|^2)$
End of Part I: to be continued

Exotic Beams Summer School 2012, Argonne National Laboratory, 5th - 9th August 2012
Neither bound nor scattering – continuum bins

Scattering states

\[u_{k\ell j}(r) \rightarrow e^{i\delta_{\ell j}} [\cos \delta_{\ell j} F_{\ell}(\eta, kr) + \sin \delta_{\ell j} G_{\ell}(\eta, kr)] \]

\[
\int_0^\infty dr \ u_{k\ell j}(r) u^*_{k'\ell j}(r) = \frac{\pi}{2} \delta(k - k')
\]

\[
\hat{u}_{\alpha\ell j}(r) = \sqrt{\frac{2}{\pi N_\alpha}} \int_{\Delta k_\alpha} dk \ g(k) \ u_{k\ell j}(r)
\]

\[
N_\alpha = \int_{\Delta k_\alpha} dk \ [g(k)]^2
\]

orthonormal set

\[
\int_0^\infty dr \ \hat{u}^*_{\alpha\ell j}(r) \hat{u}_{\beta\ell j}(r) = \delta_{\alpha\beta}
\]

\[
g(k) = 1 \quad g(k) = \sin \delta_{\ell j}
\]
Bound states – for clusters – conventions (1)

How many nodes for cluster states?

Usually guided by what the 3D harmonic oscillator potential requires - so as not to violate the Pauli Principle.

\[
\phi_{n\ell j}(\vec{r})
\]

\[\begin{align*}
\text{7Li (}\alpha+t\) } & \quad [2(n - 1) + \ell] \hbar \omega \\
\text{excitation due to a nucleon each level}
\end{align*}\]

\[
j = \frac{3}{2}^-, \frac{1}{2}^-
\]

\[
\begin{align*}
\ell = 2, n = 1 \\
\ell = 0, n = 2 \\
\ell = 1, n = 1 \\
\ell = 0, n = 1
\end{align*}
\]
Bound states – for clusters - conventions (2)

\[7\text{Li} (\alpha + t) \]

\[j = 3/2^- \]

\[3\hbar\omega \]

\[0\hbar\omega \]

\[0^+ \]

\[1/2^+ \]

\[0\hbar\omega \]

\[t \]

\[\alpha \]

\[[2(N - 1) + L]\hbar\omega = 3\hbar\omega \]

\[L = 1, N = 2 \quad L = 3, N = 1 \]

\[j = 3/2^-, 1/2^- \quad j = 7/2^-, 5/2^- \]

must be associated with the \(\alpha + t \) relative motion