Experimental Techniques

Lecture 2 – Signals and experiments

Exotic Beam Summer School 2012 Steven D. Pain Physics Division

OAK RIDGE NATIONAL LABORATORY

Managed by UT-Battelle for the Department of Energy

Analogue signal processing

Charge sensitive preamplifier

$$V_0 = \frac{Q}{C_{tot}}$$

Gain dependent on the detector capacitance (can vary)

 $V_0 = -\frac{Q}{C_f}$

Output is proportional to charge integrated on C_f , if signal is fast compared to R_fC_f

Noise is proportional to C_d

Analogue signal processing

Fast rise-time – pulse height proportional to input signal

Slow rise-time – rise and decay convolved (non-linear signals, worse resolution) – *ballistic deficit*

Signal processing

Det Preamp Bisc Timing Control of the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the second structure is in the second structure in the seco

• Excellent resolution, but some information is discarded

• Separate optimized processing required for different parameters (energy, time, etc)

Digital signal processing

- Process (and sometimes store) a digital approximation of the trace from a detector/preamp
- All information encoded in the preamp trace can be processed (software)
- Single data stream can be multiplied and each stream processed independently

Constant-fraction discriminators

Signal processing

Analogue signal processing

Shaping amplifiers

Shaping amplifiers

Shape pulses to:

- Improve signal to noise
- Reduce pileup effects
- Keep signal height information
- Lose information (eg trace shape)

Shaping amplifiers – ballistic deficit

signal processing

signal processing

Shaping amplifiers

Shape pulses to:

- Improve signal to noise
- Reduce pileup effects

Keep signal height information

Lose shape information

Genuine second pulses missed

→ Digital!

Signal processing

Det

Digitizers

(logic)

Preamp

Digital signal processing

• All information encoded in the preamp trace can be processed (software)

- Digital information can be stored, retrieved and duplicated without losses
- Duplicated data streams processed independently (eg one optimized for energy, another for time)
- Correlations between separate data streams can be made on arbitrary time scale (time-stamping)
- Full traces can be recorded, and processed offline
- Information on signal shape (eg rise-time) and closelytimed events (eg implantation-decay) is maintained
- Data sampling rate MHz GHz (depending on signal properties)

Thanks to Robert Grzywacz, University of Tennessee

Large volume detector (eg Ge, gas detectors) has a pulse shape dependence on interaction position

Movement of the charge inside the detector induces image charges

Match G to rise-time of the signal

L performs some shaping (low-pass)

Can run signal through multiple filters, optimized for different things

Trapezoidal Filter

A digital equivalent to shaping Sensitive to fast changes in

$$V = V_{L2}^{av} - V_{L1}^{av}$$

Transformed pulse

signal

Digital Signal Processing – double events Detect very short lived proton emitting nuclei at the final focus of the recoil separator Very rare event (mHz) in the presence of large implantation (kHz) 1600 **IMPLANTATION** Expected decays 0.5 μs – 32 μs 1400 1200 DECAY 1000 E_{implant} ~ 20-30 MeV E_{decay} ~1-2 MeV 800 **50 μs long signal traces** 600 400 20 40 O Time(μs)

Time (25 ns/channel)

Experiments

Direct measurement for nuclear astrophysics - ${}^{17}F(p,\gamma){}^{18}Ne$ (K.A. Chipps, *et al.*)

Counting

Requirements:

- Selectivity
- Efficiency
- Resolution

- Novae the most common thermonuclear explosion (~0.2 GK)
 - Hydrogen from companion fuses with CNO nuclei in white dwarf
 - Mechanisms are not well understood (ejecta mass and composition)
- X-ray bursts
 - Hydrogen accretes onto a neutron star
 - Hotter environment initiates the (α, p) chain heavier element synthesis
- $^{17}F(p,\gamma)^{18}Ne$ comparable to beta decay rate in novae
- The ${}^{17}F(p,\gamma){}^{18}Ne$ rate is important for
 - Energy generation
 - ¹⁷O production
 - ¹⁸F production and gamma rays
 - ${}^{17}F(p,\gamma){}^{18}Ne(e^+v_e){}^{18}F$

Binary systems

Mira system

420 light years away

6.5 billion miles apart (twice the distance between the sun and pluto)

UV image of 13 LY-long tail of Mira [GALEX]

The ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rate – resonance location

- The important 3⁺ resonance location was unknown
- Various predictions for its location had significant impact on its contribution to reaction rate in novae

- Only two significant contributions to the rate:
 - 3⁺ resonance
 - Direct capture

The ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rate – resonance location

- The important 3⁺ resonance is too high in energy to have a dominant contribution at nova temperatures
- The 3⁺ resonance will dominate the reaction rate at higher temperatures, e.g. in X-ray bursts
- Resonance strength unknown

- Only two significant contributions to the rate:
 - 3⁺ resonance
 - Direct capture

The ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rate – resonance strength

The ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rate – resonance strength

The ${}^{17}F(p,\gamma){}^{18}Ne$ reaction rate – resonance strength

- The direct capture cross section dominates the ¹⁷F(p,γ)¹⁸Ne reaction rate in novae
- Direct measurement of ¹⁷F(p,γ)¹⁸Ne at nova temperatures requires ~ 10¹⁰ pps of ¹⁷F/s, or ~40 years at current beam rates!
- Indirect method required...

- ωγ = 33 ± 14 (stat) ± 17 (sys) meV
- Constrained resonant cross section to within factor of 2

Direct capture rates from ANCs

- Direct capture occurs via an electromagnetic transition at large radii
- The cross section can be accurately calculated from the Asymptotic Normalization Coefficients (ANC's) with little model dependence
- The ANC's can be determined by measuring the cross section for peripheral proton transfer reactions
 - Mukhamedzhanov et al., PRC56 (1997) 1302.
 - Gagliardi et al., PRC59 (1999) 1149.
 - Gagliardi et al., Eur. Phys. J. A13 (2002) 227.

Transfer experiments in inverse kinematics

- Energies
- Angles
- Counting

Requirements:

- Resolution
- Efficiency
- Selectivity

• Traditionally performed in normal kinematics (light ion beam, heavy target nucleus) with magnetic spectrograph (excellent resolution)

Short-lived exotic nuclei must be the beam

- Inverse kinematics on CD₂ targets
- Si array, or solenoid (HELIOS) device
- [Augmented with gammas]

Normal Kinematics

(d n) reactions

Proton Energy-Angle Systematics

¹³²Sn(d,p) @ 4.5 MeV/A

- ORRUBA gives ~80% *φ* coverage over the range 47° →132°
- 2 rings $-\theta < 90^{\circ}$: 12 telescopes (1000 μ m R + 65 μ m NR)

 $-\theta$ > 90°: 12 detectors (500µm R)

- 324 channels total (288 front side, 36 back side)
- HI beam
- Deuterated plastic targets

¹³²Sn(d,p)¹³³Sn

¹³²Sn(d,p)¹³³Sn

E _x (keV)	J≂	Configuration	S	C^{2} (fm ⁻¹)
0 854 1,363 ± 31 2,005	7/2 ⁻ 3/2 ⁻ (1/2 ⁻) (5/2 ⁻)		$\begin{array}{c} 0.86 \pm 0.16 \\ 0.92 \pm 0.18 \\ 1.1 \pm 0.3 \\ 1.1 \pm 0.2 \end{array}$	0.64 ± 0.10 5.61 ± 0.86 2.63 ± 0.43 $(9 \pm 2) \times 10^{-4}$

The spectroscopic factors (S) were extracted from the data by using the Strömich optical potentials, a radius parameter r = 1.25 and diffuseness a = 0.65. The asymptotic normalization coefficient (ANC) is quoted as C^2 . All errors are expressed as standard deviations. Excitation energies were taken from the ENSDF database (http://www.nndc.bnl.gov/ensdf/) and the present work.

K.L. Jones et al.

Vol 465 27 May 2010 doi:10.1038/nature09048

 $\theta_{\rm CM}$ (deg)

¹³²Sn(d,t)¹³¹Sn

¹³²Sn(d,t)¹³¹Sn

¹³²Sn(d,t)¹³¹Sn

²⁶Al background

5⁺ gs, 0⁺ isomeric state at 228 keV

Focus on ²⁶Al^g reactions

- ²⁶Al nucleus was the first radioisotope detected in the interstellar medium
- Half life of 7.2x10⁵ years
- Observation of γ rays associated with its decay provides evidence of nucleosynthesis
- Temperatures ≥ 0.03 GK, the ^{26g}Al(p,γ)²⁷Si reaction is expected to govern the destruction of ²⁶Al
- Essential to reduce the uncertainty in order to determine the contribution of heavy stars to the overall Galactic abundance of ²⁶Al

²⁶AI background

N. Prantzos, R. Diehl. Physics Reports 267 1-69 (1996)

Core-collapse supernovae

massive star collapses $T_c \sim 3 \text{ GK}$ long favored source

Novae

accretion onto a white dwarf estimated < 0.4 M_{\odot} ²⁶Al ejected – depends on uncertain reactions T < 0.4 GK

Wolf-Rayet stars

>30 M_o stars – develop strong stellar winds blowing material into space T < 0.05 GK</p>

need to know ²⁶Al+p rates over large temperature range

²⁶Al – early inference

First inference of ongoing ²⁶AI synthesis

February 8, 1969

Several tons of material deposited

Material dated to predate formation of the Earth

Excess of ²⁶Mg found in calcium and aluminium inclusions of the Allende meteorite

If decay occurred in situ, then 5x10⁻⁵ 26/27 at time of solar system formation

²⁶Al – observation

Four p-type Ge detectors CsI anti-coincidence

First astronomical observation of ²⁶AI

HEAO (High Energy Astronomy Observatory)

Largest germanium spectrometer placed in orbit at that time

High Resolution Gamma Ray Spectrometer (HRGRS):

50 keV - 10 MeV

3 keV resolution

FOV 30°

²⁶AI – galactic mapping

young giant stars

Compton Gamma Ray Observatory - COMPTEL

Energy resolution 5 - 8% (FWHM)

Angular resolution 1.7 - 4.4 degrees (FWHM)

Launched 1991

INTEGRAL

Energy resolution (FWHM): 2.2 keV at 1.33 MeV for each detector (3 keV for the entire spectrometer)

Angular resolution 2.5° for point sources

Field of View fully coded: 14° flat to flat, 16° corner to corner

Launched October 2002

²⁶Al – pan-galactic source

²⁶AI – astrophysically important states

²⁶AI – identification of mirror states

G. Lotay et al, PRL 102 162502 (2009)

- Fusion-evaporation reaction to populate states and study γ decays with Gammasphere
- 6 pnA, 26 MeV beam of ¹⁶O ions on ~150 μg/cm² thick ¹²C target
- Location of low-lying resonances constrained stellar rate
- SF for these states necessary for further constraint

2	²⁷ AI		
E _{res} (keV)	E _{ex}	Jπ	E _{ex}
6	7468	5/2+	
68	7532	5/2+	7578
94	7557		7858
127	7592	9/2+	7806
189	7652	11/2+	7948
231	7690	5/2+	
241	7702	7/2+	
276	7740	9/2+	
332	7792	7/2+	
368	7831	9/2-	

lowest direct (p,γ) measurement

C. Ruiz *et al.*, **PRL 96** 252501 (2006)

What about proton transfer?

- (d,n) is tricky because of neutron detection
- Can measure (d,n) by measuring only the recoil, and coincident gamma rays, but no angular distributions, feeding issues, etc
- (³He,d) can be performed with detectors just like for (d,p), but how do you make a localized target?
 - Cell –backgrounds and straggling from windows, bulky (shadowing)
 - Implantation (difficult to make uniform, backgrounds from foils, thickness of foils)
 - Can measure (d,p) and use mirror symmetry

²⁶Al(d,p)²⁷Al data – Setup

²⁶Al(d,p)²⁷Al – Excitation Energy

²⁶AI(d,p)²⁷AI data – Excitation energy

²⁶Al(d,p)²⁷Al data – Excitation energy

Measurement of $(d,p\gamma)$ reactions in inverse kinematics

TIARA at GANIL 2x10⁵ pps ²⁴Ne 1 mg/cm² CD₂ target 2 mm beam spot

PRL 104, 192501 (2010) PHYSICAL REVIEW LETTERS week ending 14 MAY 2010

Migration of Nuclear Shell Gaps Studied in the $d({}^{24}Ne, p\gamma){}^{25}Ne$ Reaction

W. N. Catford,¹ C. N. Timis,¹ R. C. Lemmon,² M. Labiche,^{3,2} N. A. Orr,⁴ B. Fernández-Domínguez,⁵ R. Chapman,³ M. Freer,⁶ M. Chartier,⁵ H. Savajols,⁷ M. Rejmund,⁷ N. L. Achouri,⁴ N. Amzal,³ N. I. Ashwood,⁶ T. D. Baldwin,¹ M. Burns,³ L. Caballero,⁸ J. M. Casadjian,^{7,9} N. Curtis,⁶ G. de France,⁷ W. Gelletly,¹ X. Liang,³ S. D. Pain,¹ V. P. E. Pucknell,² B. Rubio,⁸ O. Sorlin,⁷ K. Spohr,³ Ch. Theisen,⁹ and D. D. Warner²
¹Department of Physics, University of Surrey, Guildford GU2 5XH, United Kingdom
²Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
³School of Engineering and Science, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
⁴LPC-ENSICAEN, IN2P3/CNRS et Université de Caen, 14050 Caen, France
⁵Oliver Lodge Laboratory, University of Birmingham, Birmingham B15 2TT, United Kingdom
⁶School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
⁷GANIL, BP 55027, 14076 Caen Cedex 5, France
⁸Instituto de Fisica Corpuscular, CSIC-Universiad de Valencia, 46071 Valencia, Spain
⁹IRFU, CEA-Saclay, 91191 Gif-sur-Yvette, France (Received 22 September 2009; published 10 May 2010)

Measurement of $(d,p\gamma)$ reactions in inverse kinematics

Measurement of $(d,p\gamma)$ reactions in inverse kinematics

What about proton transfer?

- (d,n) is tricky because of neutron detection
- Can measure (d,n) by measuring only the recoil, and coincident gamma rays, but no angular distributions, feeding issues, etc
- (³He,d) can be performed with detectors just like for (d,p), but how do you make a localized target?
 - Cell –backgrounds and straggling from windows, bulky (shadowing)
 - Implantation (backgrounds from foils, thickness of foils)
 - Gas jet target

¹⁷F(³He,d)¹⁸Ne

JENSA gas jet target

Supersonic gas jet

Operates in a choked-flow mode (constant entropy), in which flow is proportional to inlet pressure

JENSA gas jet target

After construction of JENSA at ORNL, it will be moved to the new reaccelerated beam facility (ReA3) at Michigan State University

National Science Foundation Michigan State University Paul Mantica, NSCL Status Report

Joint Users Meeting, August 2011 Slide 19

Thank you