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The design and operation support of hadron (proton and heavy-ion) linear accelerators require
substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally
developed at Argonne National Laboratory (ANL) to fulfill the special requirements of the rare isotope
accelerator (RIA) accelerator systems. From the beginning, the code has been developed to make it useful
in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the
machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion
source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-
ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found
wide applications worldwide. Until recently, the code has remained serial except for a simple paralleliza-
tion used for the simulation of multiple seeds to study the machine errors. To speed up computation, the
TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the
Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more
processors of the new generation of supercomputers known as BlueGene (BG/L). Domain decomposition
techniques have been adapted and incorporated into the parallel version of the TRACK code. To
demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton
beam represented by 108 particles has been simulated through the 325 MHz radio frequency quadrupole
and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and
advantages of large-scale parallel computing in beam dynamics simulations.
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I. INTRODUCTION

The beam dynamics code TRACK [1] has been developed
at ANL over the past few years. TRACK is a ray-tracing
code that was originally developed to fulfill the special
requirements of the rare isotope accelerator (RIA) accel-
erator systems [2]. It is based on serial beam dynamics
codes for designing and commissioning of various medium
energy high-intensity accelerators [3–6]. The TRACK code
has become a general beam dynamics code for hadron
linacs and has found wide applications worldwide [7–
10]. The most recent version of TRACK supports an exten-
sive number of different types of beam line elements with
3D fields and realistic fringe fields. 3D space charge
forces for intense beams are calculated by solving the
Poisson equation after every tracking step. It also includes
the simulation of all possible sources of error, beam
monitoring tools, corrective transverse steering, and longi-
tudinal corrections as well as automatic longitudinal and
transverse tuning of single and multiple charge state
beams. They are particularly important as a basis for
the realization of the concept of the ‘‘model driven accel-
erator’’ to make the code useful in the three stages
of a linear accelerator project, namely, the design, com-
missioning, and operation of the machine. Reference [11]
contains a brief description of the code. For more
details and specific applications of TRACK, see Ref. [12]
for error simulations and beam loss analysis in the

RIA driver linac and Ref. [13] for automatic longi-
tudinal tuning of a multiple charge state heavy-ion
beam.

Parallel computing has become an important tool in
most fields of science, speeding up existing calculations
and making more challenging and previously unreachable
ones possible. To take advantage of the ever-expanding
computing capabilities, we started this effort of paralleliz-
ing the beam dynamics code TRACK. This will extend the
scope of its applications and enable using its unique fea-
tures with large-scale and fast parallel computing.

In the large-scale error simulations [12], we imple-
mented and used a simple parallel version of the code
TRACK, where separate processors simulated the same
accelerator with different randomly generated misalign-
ment and radio frequency (RF) errors. While this approach
is very useful to study error tolerances and beam loss
analysis for a given design, where simulating �106 parti-
cles is sufficient, it cannot be used to simulate a given
accelerator setup with a very large number of particles (107

or more) especially when including space charge forces for
high-intensity beams. By simulating large numbers of
beam particles, more of the available phase space is filled
which usually results in more realistic simulations and
permits studies of beam halo formation. For these reasons
we have developed a fully parallel version of the code
TRACK capable of performing such large-scale calculations
including all realistic effects.
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We demonstrate the capabilities of the new parallel
version of TRACK by an important application, which is a
large-scale simulation of the radio frequency quadrupole
(RFQ) and the following medium energy beam transport
(MEBT) and initial section of the proposed Fermi National
Lab-Proton Driver (FNAL-PD) linac. This is a very special
and critical section of the linac, which forms RF bunches
and provides the initial acceleration. The RFQ takes a
continuous beam from the ion source, bunches it, acceler-
ates it, and focuses it to fit the acceptance of the following
accelerator system. The MEBT is a complex transition
section which provides a space to house a beam chopper.
Space charge simulations in RFQs are very computation
intensive. So far, no existing code could perform a large-
scale simulation of an RFQ. Existing codes are either serial
and could not simulate very large number of particles, such
as PARMTEQ [14], or parallel but do not support RFQ
simulations, such as IMPACT [15].

In this paper, we present the new parallel version of the
beam dynamics code TRACK and its first application for
large-scale accelerator simulations. The parallel code
TRACK has been used to simulate the initial section of the
proposed FermiLab proton driver linac [16], which in-
cludes a 325 MHz RFQ [17], a MEBT, and a room tem-
perature linac. The 45 mA beam at the entrance of the RFQ
was represented by 108 particles in a bunch. The number of
particles is close to the actual number of particles per
bunch and beam halo formation in both transverse and
longitudinal phase spaces can be clearly observed. The
choice of the number of particles is dictated not only by
the space charge considerations but also by the beam
behavior in combined external and space charge fields.

In the following section, we describe the parallelization
approach implemented in TRACK and discuss how it com-
pares to methods used in other parallel codes such as
IMPACT [15]. In Sec. III, we present the parallel Poisson
solver developed for TRACK and how it benchmarks on
different large-scale computing platforms. The implemen-
tation of the Poisson solver into the code TRACK is dis-
cussed in Sec. IV along with some performance and
consistency tests relative to the serial version of the code.
Finally, Sec. V gives a summary and discusses potential
future applications of the parallel version of TRACK.

II. CHOICE OF THE PARALLELIZATION
SCHEME

In the TRACK code, a particle is tracked through a beam
line element using a step-by-step integration of the equa-
tion of motion involving the corresponding electromag-
netic (EM) fields. The integration step size is usually
dictated by the variation of the element’s EM fields. For
accuracy, high-order Runge-Kutta (RK) integration (4th) is
usually used in every tracking step. In the presence of
external EM fields only, the beam particles could be trans-
ported independently from end to end like in RAYTRACE

[18]. This is valid only for low intensity beams where space
charge forces or internal EM fields of the beam are negli-
gible. For high-intensity beams, particles can no longer be
considered independent but feel forces from each other due
to the electric charge they carry. This is usually treated in
an effective way by defining the space charge distribution
of the beam and solving the corresponding Poisson equa-
tion in order to extract the self generated EM fields of the
beam. This is a dynamic effect because the particle distri-
bution in the 3D space changes continuously while the
beam is being transported. These variations in internal
EM fields are usually slower than the variations in external
EM fields. Hence, we may justify the use of an integration
step size based on external fields. In the presence of beam
space charge, the split-operator integration method is ap-
plied as was proposed in [15] but unlike Ref. [15] where
the maps are applied to transport particles in the external
fields, TRACK uses RK method for particle tracking over
short steps. The most distributed versions of the TRACK

code use the z-coordinate as an independent variable
(z-based code). The results presented in this paper were
obtained with z-based code too. As was discussed in
Ref. [19], the z-based code produces the same results as
t-based code in most accelerator physics applications.
Similar comparison for the serial TRACK code has been
reported in Ref. [20]. The parallelization methods dis-
cussed below are exactly the same for both z- and
t-based codes.

From this discussion it is clear that there are two com-
ponents in a beam dynamics calculation; a single or an
individual particle component, which is tracking, and a
collective component which is computing the space charge
distribution and solving the corresponding Poisson equa-
tion to extract the effective internal EM fields. This method
of calculating space charge forces is known as the particle
in cell (PIC) method [21]. Considering individual particle
interactions with each other, known as the direct summa-
tion method, would be prohibitively expensive in comput-
ing time. The PIC method incorporates a computational
grid to represent the space charge distribution of the beam.
Each beam particle (macroparticle) deposits a fraction of
its charge on the closest grid nodes, thus resulting in a
coarse-grained discretized space charge distribution. The
EM potential associated with such discretized charge dis-
tribution is computed by solving the Poisson equation on
the grid. Finally, the forces acting on each individual
particle are computed by interpolation from the discretized
potential on the grid.

While the tracking component could be easily parallel-
ized, by sharing the beam particles over the computing
processors, the space charge component requires a special
parallel algorithm. We investigated two possible method-
ologies of parallelizing the code TRACK. The first option is
to use domain decomposition for both the tracking and
space charge parts following the model used in the parallel
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code IMPACT [15]. For the reasons given below, we have
decided to use domain decomposition only for the space
charge calculation. In this model, only the space charge
calculation requires communications between different
processors. The particles are simply distributed among
the processors but not the field information. This means
that the complete EM fields and space charge grid infor-
mation are on each processor. Among the advantages of
this model are:

(i) It is easy to implement in the versatile serial code
which supports extensive functions for the accelerator
design, beam dynamics simulations and accelerator tuning;

(ii) It involves communications only when solving the
Poisson equation and not for particle tracking;

(iii) Field interpolation does not require additional in-
terprocessor communication.

The main limitation of this model, however, is the
memory required on each processor to hold the global
EM field and space charge grid information, which may
limit the maximum possible size for the space charge grid
depending on the total memory available to each processor.
However, with the fast development of the supercomputer,
the bottleneck of memory and speed will diminish in the
near future. Definitely, for the most practical problems
being solved currently, there is no memory limitation.
There is another consideration to implement the proposed
parallelization scheme. Beam halo formation and beam
losses in the linac are caused not by the space charge forces
only. The machine errors can produce a significant impact
on the beam quality and beam losses. The study of com-
bined effects of machine errors in external and space
charge fields requires the simulation of hundreds of ma-
chine error sets generated from different random number
seeds. Usually, �300 seeds are necessary to extract statis-
tically significant information about the machine error
effects on the beam. A timely large statistics error simula-
tion (108 particles per seed) for accurate beam loss analysis
may require 1024 processors per seed on BG/L type ma-
chines [22]. A total of�3� 105 processors will be needed
for the full simulation of 300 seeds. Such a large number of
processors will be available at the future petascale
machines.

In conclusion, a parallel Poisson solver has to be devel-
oped and implemented into the original code without sig-
nificant modifications of the rest of the code.

III. THE PARALLEL POISSON SOLVER

The Poisson solver routine used in TRACK takes beam
particle distributions as input and produces the EM fields
of the beam on a predefined 3D space charge (SC) grid as
output. Since TRACK is a z-based code, all beam particles
have the same z coordinate at a given tracking step but have
different arrival times (or phases) to that same z. Therefore,
the first step in this calculation is to generate the 3D space
distribution of the beam at the moment where the beam

center is at z from the arrival time information of the beam
particles. The next step is to transform the particle distri-
butions to the rest frame of the beam and perform the
deposition of the electric charges carried by the beam
particles (macroparticles). This is done using the so-called
‘‘cloud in cell’’ method where depending on distance a
particle deposits a fraction of its charge on the closest 8
nodes of the SC grid defining the SC cell the particle
belongs to. At the end of this step the beam is represented
by a space charge distribution on the SC grid. The next step
consists of solving the corresponding Poisson equation for
the electric potential U. In the current solver, we use
Cartesian coordinates with rectangular boundary condi-
tions in the transverse directions and periodic boundary
conditions in the longitudinal direction:

 �U �
@2U

@x2 �
@2U

@y2 �
@2U

@z2 � �
�
"0

with the boundary conditions

 U�0; y; z� � U�Lx; y; z� � 0;

U�x; 0; z� � U�x; Ly; z� � 0; U�x; y; 0� � U�x; y; Lz�;

where Lx, Ly, and Lz are the x, y, and z dimensions of the
SC grid, respectively. The solution is performed using fast
Fourier transforms (FFT); sine transforms in the transverse
directions and real transforms in the longitudinal direction.
Once the potential U is determined on the SC grid, it is
straightforward to derive the induced electric field in the
rest frame of the beam. By boosting back to the laboratory
frame, the EM fields could be determined on each node of
the SC grid. A second order interpolation method is used to
get the �E;B� fields in the location of a given particle in the
next tracking step.

A. Models for the parallel Poisson solver

In a practical computation, the mesh of the SC grid used
to solve the Poisson equation is fixed. Typical grid sizes
are Nx � Ny � Nz � 32� 32� 64, 64� 64� 128,
128� 128� 256, where Nx, Ny, and Nz are the number
of grid points along the x, y, and z directions, respectively.
The size of the grid imposes limitations on both the paral-
lelization options and the maximum number of processors
to use such that the parallelization efficiency cannot be
increased when increasing the number of processors be-
yond this limit. We here try to work around these limita-
tions and design an efficient parallel model to solve the
Poisson equation. For this purpose we have investigated
several parallel models. An explanation and comparison of
the three most promising models are given in the following
subsections.

1. 1D Domain decomposition in the Z direction

In this model the 3D SC grid is decomposed only in the
longitudinal Z direction. Each slice in Z is assigned to a
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single processor. Since each processor has the whole SC
data in the �x; y� plane, the Fourier transform can be
directly performed in these two directions. In order to
perform the Fourier transform in the longitudinal direction,
a transpose of the �x; z� plane data is applied, as shown in
Fig. 1. The data are transposed back to its original position
after the Fourier transform. This model has the major
drawback of limiting the maximum number of processors
to the number of SC grid nodes along the Z direction
(typically less than 256), making it useful only for a
relatively small number of processors. For some applica-
tions, the simulation of very large number of beam parti-
cles (107 to 109) may be necessary. For this purpose, the
code should be scalable to thousands of processors and 1D
domain decomposition is not sufficient.

2. 2D Domain decomposition in X and Y directions

In this model we decompose the SC grid in the trans-
verse plane in both X and Y directions. We choose the
decomposition in X and Y directions because they are
equivalent from beam dynamics point of view, which leads
to a more symmetric data flow between processors. The
decomposition could very well be done in �x; z� or �y; z�
plane. In fact, the decomposition in �x; z� or �y; z� would
benefit from a larger number of processors because the
number of SC grid nodes in the Z direction is often double
the number used in the X and Y direction. The merit of 2D

domain decomposition is that it can easily be used with
thousands of processors.

In the case of �x; y� decomposition, FFT can be directly
performed in the longitudinal direction Z as the data are
located on the same processor. In order to perform FFT in
the X and Y directions, we need to transpose the corre-
sponding data to be on the same processor. For this we
define two separate processor communication groups. One
is composed of processors with the same X location called
‘‘X communicator’’ and the other contains processors with
the same Y location named ‘‘Y communicator’’ as shown in
Fig. 2. We first apply a global data transposition in the X
group, that means in all �x; z� planes, to have complete X
data on individual processors of the X group and perform
the sine FFT in the X direction. Second, we apply a global
transposition in the Y group, in all �y; z� planes, and per-
form sine FFT in the Y direction. Last, we perform a third
global transposition to bring the data to its original posi-
tion. This method is proved to be the most efficient one for
the Poisson solver.

3. 3D Domain decomposition in X, Y, and Z directions

The 1D and 2D domain decomposition models have
been implemented by some researchers before [15], in
order to use an even larger number of processors; we
have implemented a third model. In this model we decom-
pose the SC grid in all three directions. Since the mesh is
divided in all three directions, the data transposition re-
quired before FFT is performed in the X, Y, and Z direc-
tions. Three separate processor communication groups are

 

Y communicator
(same X)

X communicator
(same Y)

Y data on separate processors

Z data on same processorX data on

processors

 separate

FIG. 2. Definition of two communication groups, one in X and
one in Y.
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X data on same processor

X data on separate processors

Z data on same processor

Z data on separate processors 

FIG. 1. Transposition of the SC data in the �x; z� plane repre-
sented by a simple transposition of a 2D matrix. After trans-
position the Z data for a given X originally shared among N
processor will be on the same processor, so a FFT in the Z
direction is easily performed.
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defined. In addition to ‘‘X communicator’’ and ‘‘Y com-
municator’’, the ‘‘Z communicator’’ is defined as shown in
Fig. 3. First, a global data transposition in the X group is
performed to have complete X data on individual process-
ors of the X group and perform FFT in the X direction.
After performing FFT, the data must be transposed back to
its original position. The same operation is performed in
the Y and Z communicators. Since more communications
between processors are required (twice as much as the 2D
case), the 3D domain decomposition may not have good
scaling on a small grid size. The advantage of 3D domain
decomposition is the possibility to use larger number of
processors compared to 2D domain decomposition. For
example, a mesh of 323 can only be run on 1024 processors
with 2D domain decomposition, but can be run on 32 768
processors with 3D domain decomposition. Since BG/L
has 3D torus structure networks for communications [22],
3D domain decomposition would be more appropriate. 3D
domain decomposition has the potential to assign each
processor to a relevant node in a BG/L network, which
may result in very high performance of the code. However,
additional studies are required for this model.

4. Performance tests of the parallelization methods

We tested the performance of all parallel models on the
same platform, which is the IBM BG/L machine at ANL.

Figure 4 shows the speedup factor Fspeed �

time�1�=time�N� defined as the ratio of the computing
time obtained with a single processor, time�1�, to the one
obtained with N processors, time�N�. As we can see in
Fig. 4, the speedup becomes saturated and levels off at a
maximum of about 10 for the 1D domain decomposition
model. The 3D model is better but it scales badly at 64
processors; whereas, using 2D domain decomposition we
can reach a speedup of about 64 for the same number of
processors. The reason for the better performance of the 2D
model over the 1D and 3D models on the same platform is
due to the smaller size of data that needs to be transferred
between different processors. For example, using the 1D
model for the grid mesh 128� 128� 256 with 4 process-
ors, the total amount of data that needs to be transposed by

all processors is 128� 128� 256� 8B � 33:5MB.
While using the 2D model with 2� 2 � 4 processors, 2
in each communication group, the total amount of data that
needs to be transposed in each group is only 64� 128�
256� 8B � 16:8MB. That is communication of only half
the data across only half of the processors, whereas the 1D
model involves communication of all the data across all the
processors. In addition, as we increase the number of
processors in the 2D model, the amount of data to be
transposed will decrease linearly as the number of process-
ors in each communication group increases; whereas the
3D model, as we explained earlier, requires about twice as
many communications as the 2D model. Considering the
performance and scalability of the 2D domain decomposi-
tion model, we choose to use it for our parallel Poisson
solver to be implemented into the parallel version of
TRACK.

B. Validation of the parallel Poisson solver

In order to validate the newly developed parallel Poisson
solver, based on the 2D domain decomposition model, we
have compared its results to cases with exact analytical
solutions.

We consider the following analytical solution:

 

�U�x; y; z� � ���x; y; z�;

��x; y; z� � 3� sin�x� sin�y� sin�z�

to be solved in a Lx � Ly � Lz � 2� box. This equation
has the analytical solution U�x; y; z� � sin�x� sin�y� sin�z�.
Figure 5 shows the comparison of the solution obtained
using the parallel Poisson solver to the exact analytical
solution. Other cases with exact analytical solutions were
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FIG. 4. (Color) Performance test results for 1D, 2D, and 3D
domain decomposition models of the parallel Poisson solver on
BG/L. Shown is the speedup factor as function of the number of
processors. The calculations were performed on the same 128�
128� 256 SC grid.

 

X communicator

Y communicator
(same X&Z)
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FIG. 3. Definition of three communication groups, one in X,
one in Y, and one in Z.
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successfully tested. In all cases the agreement is within
round-off error.

C. Performance tests on different platforms

We tested the performance of the parallel Poisson solver
based on the 2D domain decomposition model on several
platforms, namely, the Linux cluster Jazz at ANL, the IBM
SP3 supercomputer Seaborg at NERSC, Iceberg at the
Arctic Region Supercomputing Center (ARSC), Lemieux
at Pittsburgh Supercomputing Center (PSC), and the IBM
BG/L machine at ANL.

The performance is quite different on the different plat-
forms, as shown in Fig. 6. This is due to the different
network communication speeds. Among all of them, BG/
L has the fastest communication speed, and Lemieux at
Pittsburgh Supercomputer Center (PSC) has the slowest
communication speed. So on Lemieux, the maximum
speedup is only 25, while BG/L can speed up to about
700 on 1024 processors. From this comparison it is clear
that what limits the scaling of a Poisson solver is not
always the algorithm but it is the network connecting the
processors on a given machine.

Since there is no convenient software available to mea-
sure the speed of code on BG/L, the tests of the parallel
code were performed on Seaborg and Iceberg. The parallel
code can achieve 100 MFLOPS/CPU on Seaborg, and
400 MFLOPS/CPU on Iceberg.

IV. IMPLEMENTATION OF THE PARALLEL
VERSION OF TRACK

As discussed in Sec. II, the beam dynamics simulation
has two components; particle tracking and space charge
calculation. For TRACK, we choose to use domain decom-
position only for the SC component of the calculation. At
the beginning of the calculation, the internally generated or
read-in initial particle distribution is equally shared among
all the processors. Each processor has the information of
full external fields for the beam line or accelerator element
being simulated. The SC grid is also defined on all the
processors. Before every tracking step, the internal SC
fields of the beam have to be computed and combined
with the external fields. The first step in the calculation
of SC fields is the particle charge deposition on the nodes
of the SC grid. This has been done locally, which means
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FIG. 6. (Color) Performance test results of the parallel Poisson solver (based on the 2D model) on different Platforms. The left plot
shows the speedup factor up to 64 processors on 5 machines and the right one shows the speedup factor up to 1024 processors on 3
machines.
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that each processor deposits the charges of particles which
are located on it. At the end of this step, every processor
will have a partial SC distribution including only the
charge of its particles. To have the SC distribution of the
whole beam, we sum up the partial SC distributions on the
SC grid using the ‘‘All_Reduce’’ routine of the MPI
Library [23], so every processor will have the full SC
distribution of the whole beam. In order to use 2D domain
decomposition of the Poisson solver presented in III A 2,
we subdivide the full SC grid into smaller scale SC grids
using 2D space decomposition. Each processor will have a
local SC grid containing only part of the SC data as

illustrated in Fig. 7. After solving the Poisson equation,
we have the solution in the form of potential data shared
among the local grids of all processors but not on the global
SC grid. A second global communication by calling
All_Reduce will bring the potential data from the local
grids to the global one to be ready for the tracking part of
the calculation. The complete procedure is summarized in
Fig. 8.

A. Benchmarking against the serial TRACK

In order to benchmark the newly developed parallel
version of TRACK, we have performed detailed compari-
sons with the original serial version of the code. Both codes
were used to simulate a 325 MHz RFQ designed to bunch
and accelerate a �45 mA H� beam from 50 keV to
2.5 MeV. Comparisons of the results for 106 particles are
shown in Figs. 9–11. Figure 9 compares the evolution of
important beam parameters along the RFQ, and Fig. 10
compares phase space plots in the horizontal, vertical, and
longitudinal planes. A perfect agreement is obtained.
Figure 11 compares the emittance levels (fractions of the
beam outside a given emittance) in the three phase planes.
These plots show more details in the structure of the beam
such as tail or halo formation that may not clearly show up
in other plots.

B. Performance tests of the parallel TRACK

A typical 106 particle simulation in the 325 MHz RFQ
discussed above takes about 6 days on a single processor
(700 MHz) of the BG/L machine. This time reduces to
2.2 h on 64 processors and to only 40 min on 256 process-
ors, corresponding to an almost linear speedup with the
number of processors. This excellent performance was
obtained using a 32� 32� 64 SC grid. We noticed, how-

 

Partial SC on each processor

Charge deposition on SC grid

Next Tracking step

Previous Tracking step

Sum−up partial SC’s  for full SC

Parallel Poisson Solver

Solution (Potential) on local SC grids

Full Potential data on each processor Collect local Potential data to global grid

Distribute full SC data to N local SC grids

(No communication)

Main Sequence New sequence

(With communication)

FIG. 8. The parallel model implemented into TRACK showing
the main sequence similar to the serial version which does not
involve any communication to which a new parallel sequence
involving interprocessor communication has been added to cal-
culate space charge forces.

 

1 Global SC Grid 16 Local SC Grids

Global to Local Decomposition of SC Grid

FIG. 7. Example: 2D decomposition of a 16� 16� Nz global SC grid into 16 4� 4� Nz local SC grids. The Z dimension is not
shown because it is not affected by this decomposition.
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ever, that the performance depends on the size of the SC
grid. While we expect a 100% scaling for the tracking part
of the calculation, the scaling of the SC component, in-
volving global communications of the SC and Potential
data on the SC grid, should depend on the size of the SC
grid. This is confirmed by the results presented in Fig. 12.
The left plot compares the speedup factor for the same SC
grid (64� 64� 128) and different number of particles.
Increasing the number of particles from 105 to 106 reduces
the contribution of the SC calculation from 60% to 8% and
hence increasing the scaling of the global calculation. The
right plot of Fig. 12 compares the speedup factor for differ-
ent grid sizes with the same number of particles (106). The
contribution of the SC calculation is about 1% for a 32�
32� 64 SC grid, it increases to 8% for a 64� 64� 128
grid, and to 60% for a 128� 128� 256 grid, which ex-
plains the observed reduction in scaling. For beam dynam-
ics simulations in usual accelerator devices, the medium
size SC grid (64� 64� 128) is sufficient in most appli-
cations. Using this medium size grid solves also the even-
tual memory limitation discussed in Sec. II. For example,
on BG/L, with 256MB live memory per processor, every

processor could simulate up to 500k particles. This should
allow us an actual beam bunch simulation of a 50 mA H�

corresponding to 109 particles when using the whole ma-
chine (2048 processors).

V. LARGE-SCALE SIMULATION OF THE INITIAL
SECTION OF A H� LINAC

Recently we have designed a 325 MHz RFQ for the
proton driver (PD) being developed at Fermi National
Accelerator Laboratory (FNAL) [16]. The PD RFQ will
operate at 325 MHz and accelerate H� beam with�45 mA
pulsed current up to 2.5 MeV. The parallel TRACK code has
been applied for the simulation of 108 particles in the RFQ,
which consists of 269 accelerating cells and radial match-
ers at the entrance and exit of the RFQ. Previous simula-
tions have been restricted to 106 particles using the TRACK

code on a single PC.
The simulation of 100 million particles on 32� 32� 64

mesh for the Poisson solver takes about 18 h on BG/L using
1024 processors. To study the beam behavior in space
charge fields using a 32� 32� 64 SC grid, the simulation
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of�106 particles is considered adequate. However, for the
detailed beam dynamics in the RFQ where DC beam is
bunched in a strong nonlinear external field in the presence
of the beam space charge field it is more reasonable to track
108 particles. Figure 13 plotted at 15 cm downstream of the

accelerating section of the RFQ vanes compares the emit-
tance levels in the three phase space planes for 106 and 108

particles. The largest possible emittance in the transverse
phase space is defined by the RFQ acceptance while the
largest emittance in the longitudinal phase space does not

 

FIG. 14. (Color) Phase space contours for 108 particles in the three phase space planes.
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have any distinct boundary. The larger number of particles
reveals a larger beam halo in the longitudinal phase space.
The phase space 2D contours in �x; x0�, �y; y0�, and
��;�W=W� planes are shown in Fig. 14.

The dynamics of 106, 107, and 108 particles have been
simulated through the RFQ, MEBT, and the first five
focusing periods of the linac front end [24]. The results
are presented in Figs. 15 and 16. As we can see from
Fig. 15, the relative number of lost particles does not
change as we simulate a different number of particles.
But the simulation of the large number of particles reveals
a significant beam halo in the ��;�W=W� phase plane and
increase of the total beam emittance. The latter cannot be
seen with a smaller number of simulated particles. Beam
halo in the longitudinal phase plane can result in beam
losses at higher energies, especially if machine errors are
included in the simulations.

VI. SUMMARY

Several parallel models for solving the Poisson equation
have been developed and benchmarked. Numerical solu-
tions have been validated by comparing to cases with
known analytical solutions. The fastest Poisson solver
has been incorporated into the parallel TRACK code.
Benchmarking results have been obtained on several dif-
ferent platforms, such as BG/L, Iceberg, Jazz, Lemieux,
and Seaborg. The first parallel version of TRACK has been
validated and successfully used for beam dynamics simu-
lation of a large number of particles through the initial
section of the FNAL-PD linac including the RFQ and
MEBT. Various statistical results have been shown, and
results from simulating different numbers of particles have
been analyzed. The advantage of large-scale parallel simu-
lation of 108 particles has been clearly proven. The capa-
bilities of the TRACK code have been greatly extended and
can be effectively applied to run on up to 131 072 process-
ors for high-statistics beam dynamics studies including
space charge and machine errors.
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