Are Ordinary Nuclear Matter Metastable?

Collapsed nuclei based on phenomenolgical nuclear-force model A. R. Bodmer, Phys Rev D (1971)

Superheavy elementary particles, 10 – 10⁵ amu R. N. Cahn and S. L. Glashow, Science (1981)

Strange quark matter, quark nuggets, strangelets...E. Witten, Phys. Rev. D 30, 272 (1984)E. Farhi and R. L. Jaffe, Phys Rev D (1985)

Review of speculative "disaster scenarios" at RHIC R. L. Jaffe, W. Busza, F. Wilczek, and J. Sandweiss, RMP (2000)

"Our knowledge on the possible existence in nature of stable exotic particles depends solely upon experimental observation." -- John Schiffer

Noble Gases on Earth and in the Solar System

 $Deficiency \ Factor = \frac{Terrestrial \ Atomic \ Abundance}{Solar \ Atomic \ Abundance}$

H. E. Suess. Some chemical aspects of the evolution of the terrestrial atmosphere, Tellus (1966)Anders and N. Grevesse. Abundances of the elements: meteoritic and solar. Geochim. Cosmoshim. Acta (1989)

Laser Trapping and Probing of the Exotic He-6 Atoms

This work is supported by U.S. DOE, Office of Nuclear Physics

Effective Model & Quantum Monte Carlo Calculation

S. Pieper and R. Wiringa. Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

Two-body potential
Argonne V18
$$H = \sum_{i} K_{i} + \sum_{i < j} v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{R}$$
EM $1-\pi$ short-range

Coupling parameters fit to NN scattering data

Problem: binding energy of most light nuclei too small

Three-body potential *Illinois-2*

$$V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{3\pi} + V_{ijk}^{R}$$

$$\begin{vmatrix} \pi & \pi & \pi \\ \pi & \pi & \pi \\ \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \end{vmatrix}$$

Coupling parameters fit to energy levels of light nuclei

GFMC Calculations of Energy Levels

Halo Nuclei ⁶He and ⁸He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	807 ms	0 ⁺	1	$\alpha + 2n$
He-8	119 ms	0 ⁺	2	$\alpha + 4n$

Borromean Rings

Atomic Isotope Shift

Isotope Shift $\delta v = \delta v_{MS} + \delta v_{FS}$

 $IS(2^{3}S_{1} - 3^{3}P_{2}) = 43196.202(16) + 1.008(\langle r^{2} \rangle_{\text{He-4}} - \langle r^{2} \rangle_{\text{He-6}}) MHz$ Drake, Nucl. Phys. (2004)

100 kHz error in frequency \rightarrow 1% error in radius

Atomic Energy Levels of Helium

A helium glow discharge

Approach & Collaboration

Collaboration list

ATTA: P. Mueller¹, L.-B. Wang^{1,2}, K. Bailey¹, **R.J. Holt¹**, **Z.-T. Lu¹**, **T.P. O'Conner¹** ¹*Physics Division, Argonne National Laboratory* ²*University of Illinois at Urbana-Champaign*

Heavy Ion Group: J. Greene¹, D. Henderson¹, R. Janssens¹, C.L. Jiang¹, R. Pardo¹, M. Paul², K. Rehm¹, J. Schiffer¹, X. Tang¹ ¹Physics Division, Argonne National Laboratory ²Hebrew University, Israel

Atomic Theory: G.W.F. Drake University of Windsor, Canada

⁶He - Production at ATLAS

2006 American Physical Society

Dissertation Award in Nuclear Physics

Willard Libby Fellow

Spokesperson for ⁸He Collaboration

Peter Müller & Li-Bang Wang

⁶He ($t_{1/2} = 0.8$ s) Trap: Setup and Data

Laser Setup - 389 nm (778 nm)

A Proving Ground for Nuclear Structure Theories

First modelindependent determination

Wang et al., PRL (2004)

Next Goal: 8He

⁸He Yield

1n

- ♦ ATLAS, Argonne $< 1 \times 10^4 \text{ s}^{-1}$
- GANIL, France ~ $5 \times 10^5 \text{ s}^{-1}$

			10[\]	11N	12	13N	14[]	15N	
		sC	۶C	10C	110	120	130	14C	
		7B	≈B	۶B	10B	ыB	12B	13B	
		6Be	7Be	8Be	°Be	¹⁰ Be	11Be	12Be	
⁴Li	⁴Li	₅Li	۰Li	7Li	°Li	۶Li	™Li	¹¹Li	
	зНе	⁴He	₅He	ĕHe	7He	°He	°Не	¹®He	
۱H	2H	зН	⁴H	₅H	еH				

Current Status

- Proposal to GANIL approved with "highest priority";
- Improved trap efficiency by a factor of 30;
- Preparation of lab space and safety documents at GANIL is underway.

Copyright Société du Tour de France

Beta-Neutrino Correlation in the Decay of 6He

Best experimental limit:

 $a = -0.3343 \pm 0.0030$ $\frac{|C_T|^2 + |C_T'|^2}{|C_A|^2 + |C_A'|^2} \le 0.4\%$

Johnson et al., Phys. Rev. (1963)

β-Decay Study with Laser Trapped ⁶He

- ATLAS: 1 x 10^6 s⁻¹ with 50 pnA ⁷Li
- High-current facility: 1 x 10^{10} s⁻¹, with 5 μ A ¹H
- Reactor facility: 1 x 10^{10} s⁻¹, 9 Be(n, α)⁶He

Assume a ⁶He rate of 1 x 10^4 s⁻¹, 15 minutes, 2 x 10^5 coincidence events, $\delta a = \pm 0.008$.

Frequency-Modulation Saturation Spectroscopy of He*

Limits on the Abundance of Anomalously Heavy Helium

