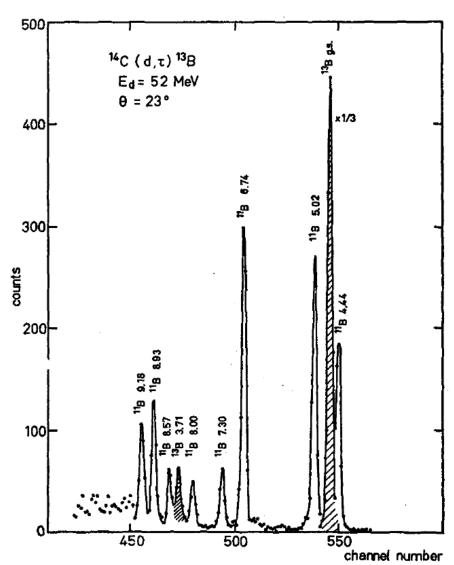

Physics opportunities with HELIOS (+AIRIS)

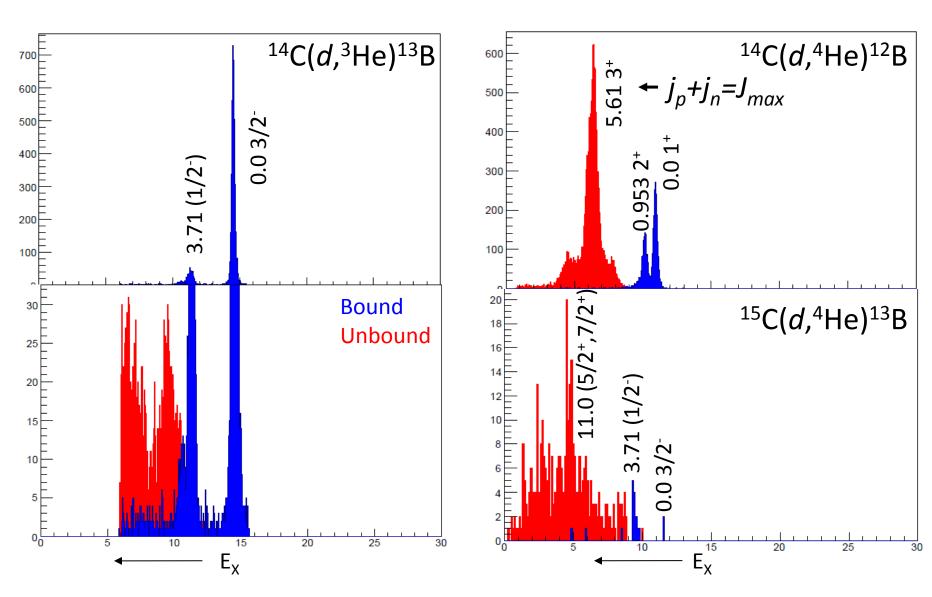
HELIOS excels at direct transfer reactions


- Neutron stripping $-(d,p) \sigma \sim 1-50$ mb/sr
- Proton stripping (${}^{3}\text{He},d$) σ ~ .1-10 mb/sr
- Proton pickup $(d,^3He)$ σ ~ few mb/sr
- Neutron pickup (d,t) σ ~ few mb/sr
- Two-neutron stripping (t,p) σ ~ .1- few mb/sr
- Proton-neutron pickup (d,α) σ ~ .1- few mb/sr
- Proton-neutron stripping (α,d) $\sigma \sim .1$ few mb/sr

Most reactions are within reach with beam intensities down to approximately 10⁴ pps

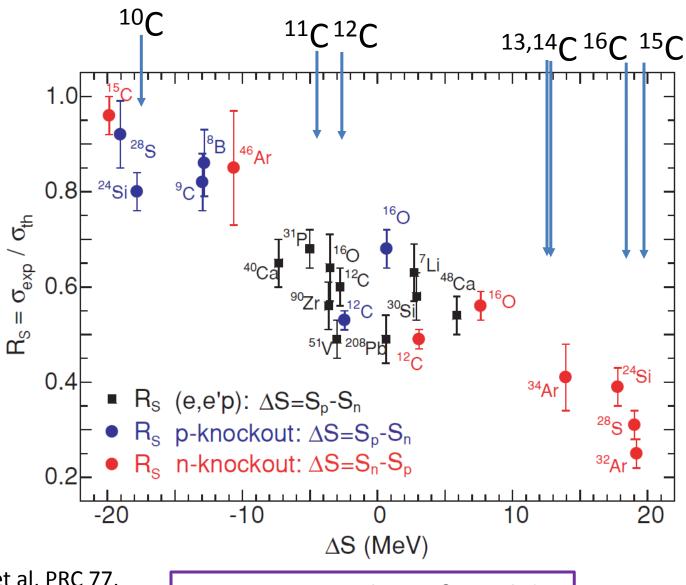
Interesting light beams from AIRIS

HELIOS – it's not just for (d,p) anymore...



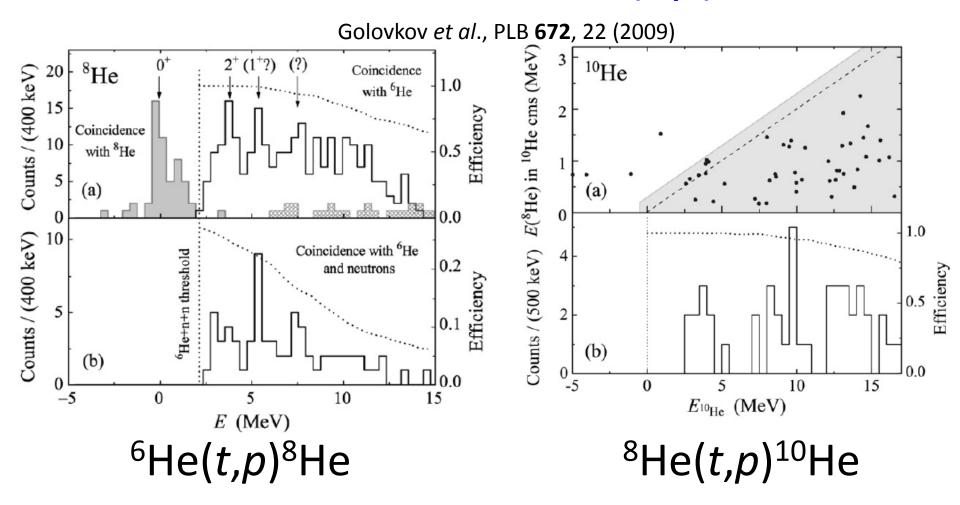
Part of study of proton correlations in the ground states of ^{12,13,14}C.

 $^{14}\text{C}(d,^{3}\text{He})^{13}\text{B}$ - target was 40% ^{14}C , 60% ^{12}C


Result – spectroscopic factors in agreement with CK shell model, show reduction in $0p_{1/2}$ proton occupancy with increasing N, but absolute values have large uncertainties

HELIOS – it's not just for (d,p) anymore...

(S. Bedoor, preliminary)


Gade systematics and proton removal from ^AC

A. Gade et al, PRC 77, 044306 (2008)

Access with ${}^{A}C(d, {}^{3}He)^{A-1}B$

Pair transfer with (t,p)

 4,6,8 He $(t,p)^{6,8,10}$ He with HELIOS: Improve statistics and resolution. Detailed properties of wave functions

Pair transfer with (t,p)

N=8 magicity broken in ^{11,12,(13)}Be But restored in ¹⁴Be?

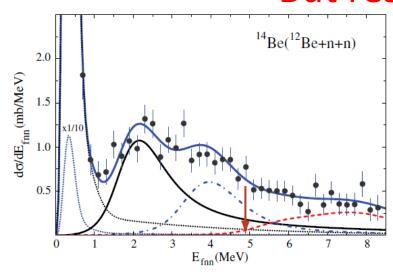
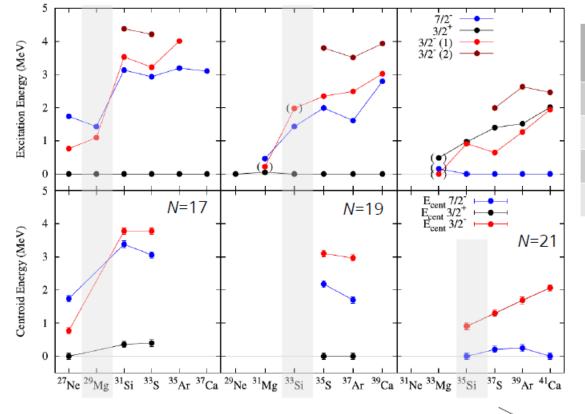


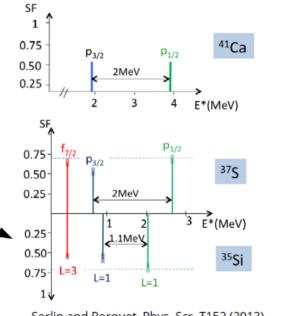
FIG. 1 (color online). Relative-energy spectrum $(d\sigma/dE_{fnn})$ of the $^{12}\mathrm{Be} + n + n$ system after inelastic scattering of 304 MeV/u $^{14}\mathrm{Be}$ in a liquid hydrogen target. The curves show the decomposition of the spectrum into Breit-Wigner shaped resonances, with the experimental resolution taken into account. The arrow indicates the position of the four-neutron decay threshold.

Aksyutina et al., PRL 111, 242501 (2013).


Excitation energies of 2_1^+ and deformation lengths of 12,14 Be from inelastic scattering on a 12 C target are compared between the experiment and shell model calculations. A three-body model calculation for 14 Be(2_1^+)[16] is also shown

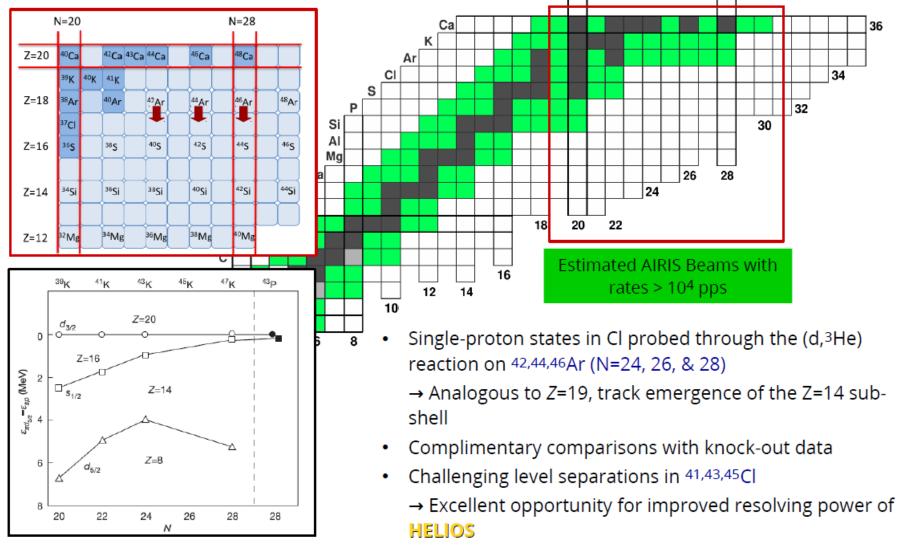
	e_p/e	e_n/e	E _x (MeV)	M_p (efm ²)	$\frac{M_n}{(e \text{fm}^2)}$	δ (fm)
¹² Be Exp.[2]			2.10			1.93(11)
PSDMK	1.3	0.5	4.04	6.37	2.93	1.18
SFO	1.3	0.5	2.53	7.99	10.76	2.28
SFO	1.11	0.27	2.53	5.73	8.64	1.83
¹⁴ Be Present Exp.			1.54(13)			1.18(13)
PSDMK	1.3	0.5	2.16	8.98	13.11	2.29
SFO	1.3	0.5	1.93	9.18	13.41	2.34
SFO	1.05	0.20	1.93	5.63	10.11	1.63
3-body[16]			1.10			

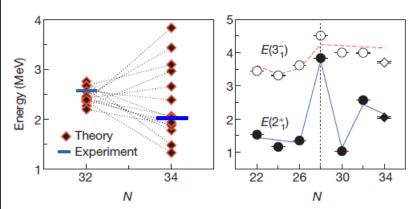
Sugimoto et al., PLB 654, 160 (2007)


 12 Be $(t,p)^{14}$ Be offers a complementary probe of wave functions in 14 Be

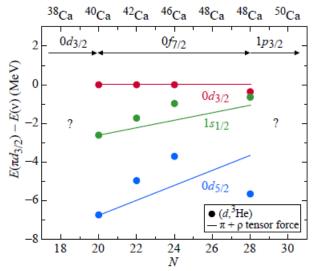
Single-particle centroids in proximity of the "Island of Inversion"

Secondary Beam	Expected Rate	Reaction(s)
²⁸ Mg	>105	(d,p)
³² Si	>105	(d,p), (d, ³ He)
³³ Si	>104	(d,³He)
34 S i	>104	(d,p), (d,3He)


- Single-neutron adding into *N*=17, 19, & 21 nuclei
- Complete and extend centroid systematics
- Testing of the spin-orbit splitting strength
- Single-proton removal into the Island of Inversion (31-33Al)


Sorlin and Porquet, Phys. Scr. T152 (2013)

C. R. Hoffman


Single-particle structure near the neutronrich *N*=28 region of shape coexistence

The Ca chain with AIRIS beams and HELIOS

D. Steppenbeck et al., Nature 502, 207 (2013)

T. Otsuka et al., PRL 95, 232502 (2005)

To date

- No quantitative measures of admixtures
- · Non-yrast states populated weakly
- Ingredients for SM calculations missing may reduce some uncertainties in calculations of N = 32,34 shell gaps

Measure transfer reactions - spectroscopic factors

- Quantitative constraints for SM calculations
- Determine centroids of **neutron** $p_{3/2,1/2}$ and $f_{5/2}$ with (d,p)
- Determine centroids of **proton** $d_{3/2}$, $s_{1/2}$, $d_{5/2}$ with $(d,^3\text{He})$ (caveat, the $d_{5/2}$ may be too deeply bound)
- Determine $T = 1 (p_{3/2})^2$ matrix elements from 49 Ca(d,p)
- Proton hole states below N = 20 and above N = 28

Beam	Intensity (AIRIS)	Reactions to study	
³⁸ Ca	2.1×10 ⁵	(d,3He)	
⁴⁹ Ca	3.3×10 ⁶	$(d,p),(d,^{3}{\rm He})$	
5°Ca	1.3×10 ⁵	$(d,p),[(t,p)],(d,^3{\rm He})$	

Summary

- Many new opportunities would be made available with HELIOS+AIRIS beams
 - Higher intensity RIBS
 - RIBS further from stability
 - A variety of reactions to choose from
- Many cases for different mass regions
- I have not mentioned CARIBU but there are many opportunities there as well