

2014 ATLAS User's Meeting

Heavy-Ion Induced Transfer Reactions using Particle-γ Coincidence Spectroscopy (Sub Coulomb)

J.M. Allmond JINPA, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Inverse Kinematics: (⁹Be, ⁸Be-> 2α)

Energetic/detectable target-like recoils predominately at backward θcm

*Only need 2π particle detector

*Use sub-Coulomb to obtain reliable absolute cross-section normalization via Rutherford

Hardware

CsI or Si*

Particles

HPGe

γ-Rays

Zero-Degree Bragg

Target Thickness and Beam Composition

*Recoiling target-like Heavy Ion may not make it through ΔE of Si telescope for PID: use (9Be, 8Be->2a) for clean tag in this case.

 σ_{exp}

 σ_{thy}

Measure Target Thickness / Eloss

Stopping powers are not known to high precision

and DSAM are sensitive to the target thickness and E_{loss}

WARNING!!! Do not trust the energy loss calculated from the "nominal" target thickness.

PID (arb. units)

8Be --> 2 x 1 α correlation

*For Si detectors, use 2α hit in ΔE with equivalent energies for clean tag.

¹³³Sn versus ¹³³Sn + 2 Protons

Going from system of 1n to 1n+2p adds a lot of complexity

¹³³Sn(N=83) Decay Paths by γ - γ

γ-γ coincidences can be used to determine decay paths

Particle-y Angular Correlations

Can use particle-y correlations to determine multipolarity of transitions

(⁹Be, ⁸Bey)¹³³Sn Summary

Extensive spectroscopic information determined

Initial Cases for CARIBU / AIRIS

D.C. Radford², A. Galindo-Uribarri^{2,3}, A.E. Stuchbery⁴, J.R. Beene², R.L. Varner², E. Padilla-Rodal⁵,
A. Ayres³, A. Bey³, J.C. Batchelder⁶, C.R. Bingham^{2,3}, M.E. Howard⁷, K.L. Jones³, J.F. Liang², B. Manning⁷,
P.E. Mueller², C.D. Nesaraja², S.D. Pain², W.A. Peters⁶, A. Ratkiewicz⁷, K.T. Schmitt^{2,3}, D. Shapira²,
M.S. Smith², N.J. Stone^{3,8}, and C.-H. Yu²

 JIHIR, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996
Department of Physics, Australian National University, Canberra ACT 0200, Australia 5 Instituto de Ciencias Nucleares, UNAM, AP 70-543, 04510 Mexico, D.F., Mexico 6 UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN 37831
Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 8 Oxford Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

*Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

Contact: allmondjm@ornl.gov

All expected N=83 single-particle states accounted for in ¹³³Sn

Results

-				-		-				
E_x (keV)	J^{π_n}	E_{χ} (keV)	τ (fs)	σ (mb)	σ_{thy} (mb)	Present (⁹ Be, ^{8,10} Be) S	[25,51] (d,p) S	Present (9 Be, 8,10 Be) C^{2} (fm ⁻¹)	$\begin{array}{c} [25,51] \\ (d, p) \\ C^2 \ (\mathrm{fm}^{-1}) \end{array}$	[53] (¹³ C, ¹² C) C ² (fm ⁻¹)
					9Be (208p	8Be) 209Ph				
0 778.9(3) ⁵ 1423(1) ⁵ 1566.0(9)	9/2 ⁺ 11/2 ⁺ 15/2 ⁻ 5/2 ⁺	1566.0(9)		0.13(4)	0.0013(4) 0.0005(2) 0.0001(1) 0.084(21)	1.5(6)	1.21(36) 1.57(47) 1.19(36) 1.08(32)	14(5)	2.20(17) 0.00187(13) $2.5(2) \times 10^{-5}$ 13.0(7) 48.7(20)	2.25(29) 0.0037(5)
2031(1) 2489(2) 2535(1)	$\frac{1}{2^+}$ $\frac{7}{2^+}$ $\frac{3}{2^+}$	464.5(4) 2489(2) 969.4(6)	87(24)	0.28(2) 0.10(2) 0.43(3)	0.22(5) 0.062(19) 0.38(9)	1.6(6) 1.1(3)	1.04(31) 1.27(38) 1.11(33)	45(8) 0.026(6) 2.3(4)	48.7(30) 0.025(2) 2.93(20)	41.7(54)
0 331.7(3) 1654.53(8) ^b	$(3/2^+)$ $(1/2^+)$ $(5/2^+)$	331.7(3)		0.68(8)	⁹ Be (¹³² Sr 0.15(11) 0.17(12) 0.03(2)	4(3)				
					⁹ Be (¹³² Si	n, ⁸ Be) ¹³³ Sn				
0 853.9(3) 1366.8(4) 1560.6(9)	7/2 ⁻ 3/2 ⁻ 1/2 ⁻ (9/2 ⁻)	853.9(3) 512.9(3) 1560.6(9)	480(⁺¹⁶⁰ ₋₁₀₀)	12(1) 11(1) 0.58(10)	3(1) 13(3) 12(3) 1.1(4)	0.9(2) 0.9(2) 0.5(2)	0.86(7) 0.92(7) 1.1(2)	6.0(14) 2.5(5) $5.1(15) \times 10^{-6}$	0.64(5) 5.6(4) 2.6(6)	
2002(2) 2792(3)	5/2-	2002(2) 2792(3)	$13(^{+10}_{-13})$	8.6(6) 0.38(9)	9.6(24) 0.18(7)	0.9(2)	1.1(2)	0.0020(4)	0.0009(2)	

Results

Nuclide	Transition	$B(M1)^{exp}$	$B(M1)^{thy}$
²⁰⁹ Pb	$3d_{3/2} \rightarrow 3d_{5/2}$	0.72(20)	0.71
²⁰⁷ Pb	$3p_{3/2}^{-1} \rightarrow 3p_{1/2}^{-1}$	0.47(6) ^a	0.40
¹³³ Sn	$2f_{5/2} \rightarrow 2f_{7/2}$	$0.55(^{+\infty}_{-14})$	0.52
¹³³ Sn	$3p_{1/2} \rightarrow 3p_{3/2}$	$0.88(^{+23}_{-22})$	0.67 °

Results

