2014 ATLAS User's Meeting

Heavy-Ion Induced Transfer Reactions using Particle- γ Coincidence Spectroscopy
 (Sub Coulomb)

JINPA, Oak Ridge National Laboratory, Oak Ridge, TN 37831

onribf Example One-Neutron Transfer Studies

Inverse Kinematics: $\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be}->2 \alpha\right)$

Energetic/detectable target-like recoils predominately at backward $\theta \mathrm{cm}$

*Only need 2π particle detector
*Use sub-Coulomb to obtain reliable absolute cross-section normalization via Rutherford

Hardware

Particles

γ-Rays

Zero-Degree Bragg

Target Thickness and Beam Composition
*Recoiling target-like Heavy Ion may not make it through
$\Delta \mathrm{E}$ of Si telescope for PID: use $(9 \mathrm{Be}, 8 \mathrm{Be}->2 \mathrm{a})$ for clean tag in this case.
anriber
$\sigma_{\text {exp }}$ $\sigma_{\text {thy }}$ and DSAM are sensitive to the target thickness and $E_{\text {loss }}$,

WARNING!!!
Do not trust the energy loss calculated from the "nominal" target thickness.

RIDGE

Measure Target Thickness / Eloss

Stopping powers are not known to high precision

$\sigma_{\text {exp }}$ $\sigma_{\text {thy }}$

WARNING!!!
Do not trust the energy loss calculated from the "nominal" target thickness.

*For Si detectors, use 2α hit in $\Delta \mathrm{E}$ with equivalent energies for clean tag.

N=83 Single-Particle States

Going from system of 1 n to $1 \mathrm{n}+2 \mathrm{p}$ adds a lot of complexity

${ }^{133} \operatorname{Sn}(\mathrm{~N}=83)$ Decay Paths by $\gamma-\gamma$

$\gamma-\gamma$ coincidences can be used to determine decay paths

Lifetimes can be measured if comparable to flight time through target

Particle- γ Angular Correlations

Can use particle $-\gamma$ correlations to determine multipolarity of transitions

$\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be} \gamma\right){ }^{133} \mathrm{Sn}$ Summary

Extensive spectroscopic information determined

USE:

or
GODDESS

Thanks to all of the Collaborators

D.C. Radford ${ }^{2}$, A. Galindo-Uribarri²,3, A.E. Stuchbery ${ }^{4}$, J.R. Beene ${ }^{2}$, R.L. Varner ${ }^{2}$, E. Padilla-Rodal ${ }^{5}$, A. Ayres ${ }^{3}$, A. Bey ${ }^{3}$, J.C. Batchelder ${ }^{6}$, C.R. Bingham²,3, M.E. Howard ${ }^{7}$, K.L. Jones ${ }^{3}$, J.F. Liang ${ }^{2}$, B. Manning ${ }^{7}$, P.E. Mueller ${ }^{2}$, C.D. Nesaraja², S.D. Pain ${ }^{2}$, W.A. Peters ${ }^{6}$, A. Ratkiewicz ${ }^{7}$, K.T. Schmitt ${ }^{2,3}$, D. Shapira², M.S. Smith ${ }^{2}$, N.J. Stone ${ }^{3,8}$, and C.-H. Yu ${ }^{2}$
1 JIHIR, Oak Ridge National Laboratory, Oak Ridge, TN 37831
2 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
3 Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996
4 Department of Physics, Australian National University, Canberra ACT 0200, Australia 5 Instituto de Ciencias Nucleares, UNAM, AP 70-543, 04510 Mexico, D.F., Mexico 6 UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN 37831
7 Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903
8 Oxford Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

*Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

Contact: allmondjm@ornl.gov

hriby Particle- γ Angular Correlations in ${ }^{133} \mathrm{Sn}$
 RIDGE
 The two transitions are consistent with low-spin initial states

Results

$\underline{E_{x}(\mathrm{keV})}$	$J^{\text {Na }}$	$E_{\gamma}(\mathrm{keV})$	τ (fs)	σ (mb)	$\sigma_{\text {thy }}(\mathrm{mb})$	$\begin{gathered} \text { Present } \\ \left({ }^{9} \mathrm{Be},{ }^{8,10} \mathrm{Be}\right) \\ S \\ \hline \end{gathered}$	$\begin{gathered} {[25,51]} \\ (\mathrm{d}, \mathrm{p}) \\ S \end{gathered}$	$\begin{gathered} \text { Present } \\ \left({ }^{9} \mathrm{Be},{ }^{8,10} \mathrm{Be}\right) \\ C^{2}\left(\mathrm{fm}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} {[25,51]} \\ (d, p) \\ C^{2}\left(\mathrm{fm}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} {[53]} \\ \left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right) \\ C^{2}\left(\mathrm{fm}^{-1}\right) \\ \hline \end{gathered}$	
${ }^{9} \mathrm{Be}\left({ }^{208} \mathrm{~Pb},{ }^{8} \mathrm{Be}\right){ }^{209} \mathrm{~Pb}$											
0	9/2 ${ }^{+}$				0.0013(4)		1.21(36)		2.20(17)	2.25(29)	
778.9(3)	11/2+				0.0005(2)		1.57(47)		0.00187(13)	0.0037(5)	
1423(1) ${ }^{\text {b }}$	15/2-				0.0001(1)		1.19(36)		$2.5(2) \times 10^{-5}$		
1566.0(9)	$5 / 2^{+}$	1566.0(9)		0.13(4)	0.084(21)	1.5(6)	1.08(32)	14(5)	13.0(7)		
2031(1)	$1 / 2^{+}$	464.5(4)		$0.28(2)$	0.22(5)	1.3(3)	1.04(31)	45(8)	48.7(30)	41.7(54)	
2489(2)	$7 / 2^{+}$	2489(2)		0.10(2)	0.062(19)	1.6(6)	1.27(38)	0.026(6)	0.025(2)		
2535(1)	$3 / 2^{+}$	969.4(6)	87(24)	0.43(3)	0.38(9)	1.1(3)	1.11(33)	2.3(4)	2.93(20)		
$0 \quad\left(3 / 2^{+}\right) \quad{ }^{9} \mathrm{Be}\left(\left(^{132} \mathrm{Sn},{ }^{10} \mathrm{Be}\right){ }^{131} \mathrm{Sn}\right.$											
331.7(3)	(1/2+)	331.7(3)		0.68(8)	0.17(12)	4(3)					
1654.53(8) ${ }^{\text {b }}$	$\left(5 / 2^{+}\right)$				0.03(2)						
${ }^{9} \mathrm{Be}\left({ }^{132} \mathrm{Sn},{ }^{8} \mathrm{Be}\right){ }^{133} \mathrm{Sn}$											
0	$7 / 2^{-}$					3(1)		0.86(7)		0.64(5)	
853.9(3)	$3 / 2^{-}$	853.9(3)		12(1)	13(3)	0.9(2)	0.92(7)	6.0(14)	5.6(4)		
1366.8(4)	$1 / 2^{-}$	512.9(3)	$480\left({ }_{-100}^{+160}\right)$	11(1)	12(3)	0.9(2)	1.1(2)	2.5(5)	2.6(6)		
1560.6(9)	(9/2-)	1560.6(9)		0.58(10)	1.1(4)	0.5(2)		$5.1(15) \times 10^{-6}$			
2002(2)	$5 / 2^{-}$	2002(2)	$13\left({ }_{-13}^{+10}\right)$	8.6(6)	$9.6(24)$	0.9(2)	1.1(2)	0.0020 (4)	0.0009(2)		
2792(3)		2792(3)		0.38(9)	0.18(7)						

Results

Nuclide	Transition	$B(M 1)^{\text {exp }}$	$B(M 1)^{\text {thy }}$
${ }^{209} \mathrm{~Pb}$	$3 d_{3 / 2} \rightarrow 3 d_{5 / 2}$	$0.72(20)$	$0.71^{\text {b }}$
${ }^{207} \mathrm{~Pb}$	$3 p_{3 / 2}^{-1} \rightarrow 3 p_{1 / 2}^{-1}$	$0.47(6)^{+}$	0.40°
${ }^{133} \mathrm{Sn}$	$2 f_{5 / 2} \rightarrow 2 f_{7 / 2}$	$0.55\left({ }_{-14}^{+\infty}\right)$	$0.52^{+\infty}$
${ }^{133} \mathrm{Sn}$	$3 p_{1 / 2} \rightarrow 3 p_{3 / 2}$	$0.88\left({ }_{-22}^{+23}\right)$	0.67°

Results

