

Work supported under contract number DE-AC02-05CH11231.

- first generation gamma-ray tracking array
- spherical shell of Ge covering 25% of available solid angle (scalable to full 4π coverage)
- consists of seven 4-crystal modules (quads), 36-way segmented HPGe crystals (1000 segments)
- tracking ability removes need for active suppression, scales to very high efficiencies
- physics runs now underway at ATLAS/ANL

first assembly of Gretina in cave 4C at the 88" cyclotron

Institutions/Timeline

MICHIGAN STATE UNIVERSITY Oak Ridge National Laboratory

- start construction: 2005
- start operation: 2011
- engineering and commissioning runs: 2011 2012
- operations at NSCL: 2012 2013
- operations at ATLAS: 2014
- second NSCL campaign: 2015

Segmented HPGe Crystals

- 4 encapsulated crystals in a single cryostat, 2 types of irregular hexagons allow for spherical packing
- segments have warm FETs, central contacts have cold FETs
- 148 pre-amps/module

PETI

Doppler Reconstruction

²⁸Si from ³⁶Ar on 47mg/cm² Be v/c=0.38

D. Weisshaar et al., GRETINA @ NSCL Commissioning

⁶⁴Ge populated following knockout from ⁶⁵Ge

Reduction of Compton background by tracking allows – for the first time – gamma spectroscopy with fast beams with spectral quality comparable to arrays with anti– Compton shields.

Performance in a Nutshell

- efficiency:
 - 6.6% calorimeter mode
 - -5.0% tracked
- P/T = 0.52 (tracked)
- energy resolution:
 - central contact: 1.7 keV @ 122 keV, 2.6 keV @ 1332 keV
 - segments: 2.5 keV @ 1332 keV
 - first-hit position resolution: 2mm
- rates:
 - ~20 kHz / crystal (pre-trigger)
 - 20k gamma/s (30k decomp/s) processing rate (post-trigger)

- seven quads (Q1, Q3-Q8) currently operating in the array for ATLAS campaign
- all detectors recently annealed:
 - 4 capsules rendered inoperative
 - consolidated into single quad (Q2) for repair, expected back in summer of 2014
- Q9 ordered expected in fall of 2014
- plan to characterize, instrument, and make available Q2, Q9 for providing additional efficiency to array for the latter part of ATLAS campaign

- digitizer improvements:
 - replace clock distribution chip (stability)
 - adj. baseline restoration time (rate)
 - enable pipelining (deadtime)
- revised basis signal basis for all crystals, (semi-) automate process (signal decomposition)
- single interaction search (tracking)
- storage node [supernode]
 - allow for mode-3 data collection at higher rates, simplify calibrations (180 MB/s sustained) (rate)
- noise optimization (energy resolution)
- interface auxiliary detectors (CHICO2, FMA)

Auxiliary Detectors

- critical to success of large spectrometers
- GRETINA designed with auxiliary detectors in mind
- BGS, S800, CHICO interfaces successfully implemented
- GRETINA a fully timestamped system crystals run independently
- 3 interfaces:
 - timestamp / synchronization
 - readout
 - run control
- interested? please contact us

GRETINA and CHICO (yesterday)

- four GRETINA commissioning runs at ATLAS/ANL:
 - polarization sensitivity (1520x, A.Wiens, LBNL) * ^{nat}Mg(p,p')@ 1368MeV
 - high multiplicity performance, Doppler correction (1499x, T. Lauritsen, ANL) ^{*}
 ¹²C(⁸⁴Kr,4n)⁹²Mo@394MeV, ¹²²Sn(⁴⁰Ar,4n)¹⁵⁸Er@170MeV
 - CHICO commissioning (1509x, M. Albers, ANL) *
 ²⁰⁸Pb(⁷²Ge, ²⁰⁸Pb(⁷⁶Ge, @ 302, 320 MeV respectively)
 - high-energy response, pair-production tracking (1515x E. Merchan-Rodriguez, Lowell)
- analysis ongoing

* complete!

Polarization Sensitivity

- ²⁴Mg (1368, 2754, 4238 keV) low-E proton excitation
- applied std. two-interaction decomposition, tracking
- prelim. analysis of angular distribution, azimuthal scattering

sensitive test of signal decomposition, tracking proving ground for improved alg. and bases

Azimuthal Compton scattering angle

- additional quads (Q8, Q9, potentially Q10)
- signal decomposition esp. for secondary int. points (P/T)
 - coincidence scans
 - better modeling of crystal basis:
 - transport properties, impurity concentration
 - electronics response (differential crosstalk)
 - signal quality
- counting rates
 - segment summing, threshold effects (recover energy resolution)
 - digitizer firmware pipelining
 - continuous digitization (long term)

- Welcome community participation!
- GUEC, GAC interfaces to the community
- websites, wiki(s), repositories:
 - GRETINA software working group (gswg.lbl.gov)
 - NSCL, Gretina
 - ANL, Gretina
- full complement of software tools available for data analysis, GRETINA development:
 - sorting codes
 - simulation
 - basis generation toolchain
 - offline signal decomposition
 - tracking

- GRETINA is a first-generation gamma-ray tracking detector scalable to efficiencies well beyond conventional HPGe spectrometer arrays
- GRETINA operated successfully during a highly productive NSCL campaign at the S800
 - 1 rapid communication, 2 letters accepted, 1 in process ... more to come
- physics campaign now underway at ATLAS with CARIBU/CHICO and soon FMA
- second GRETINA/S800 campaign will begin at NSCL in 2015

Acknowledgements

Construction and commissioning:

The performance of the Gamma-Ray Energy Tracking In-beam Nuclear Array GRETINA

S. Paschalis^{a,*}, I.Y. Lee^{a,**}, A.O. Macchiavelli^a, C.M. Campbell^a, M. Cromaz^a, S. Gros^a, J. Pavan^a, J. Qian^a, R.M. Clark^a, H.L. Crawford^a, D. Doering^a, P. Fallon^a, C. Lionberger^a, T. Loew^a, M. Petri^a, T. Stezelberger^a, S. Zimmermann^a, D.C. Radford^b, K. Lagergren^b, D. Weisshaar^c, R. Winkler^c, T. Glasmacher^c, J.T. Anderson^d, C.W. Beausang^e

^a Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^b Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^c National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

^d Argonne National Laboratory, Argonne, IL 60439, USA

^e Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA

Operations: ANL/NSCL/LBNL

- ANL: S. Zhu, A. Ayangeakaa, M. Albers, J. Anderson, M. Carpenter, H. David, T. Lauritsen, J. Rohrer, B. Zabransky
- NSCL: D. Weisshaar, A Gade, F. Recchia, T. Baugher, C. Langer, E. Lunderberg, A. Lemasson, S. Noji, M. Scott, D. Smalley, K. Wimmer, R.Zegers R. Fox (NSCL DAQ) and D. Bazin, S. Williams (S800)

ORNL: D. Radford, J. M. Allmond

LBNL: I.Y. Lee, A.O. Macchiavelli, C.M. Campbell, H. Crawford, P.Fallon, C. Lionberger, A. Wiens

GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL).

Performance Metrics

		Table 2: Ar	nticipated performance of	GRETINA array	
			GRETINA KPP	GRETINA Current*	GRETINA Goal*
1	A b s o l u t e P h o t o p e a k Efficiency	1332 keV, M = 1	7.2% 5.4% tracking (Extrapolated values)	6.6 % 5.0 %	6.6% 5.5%
2	Energy Resolution (FWHM)				
	Central Contact	1332 keV		2.95 keV	2.5 keV
		122 keV		2keV	1.7 keV
	Segments	1332 keV		3.2 keV	2.7 keV
		122 keV		2.1 keV	1.75keV
3	Peak-to-Total:	60	40% Summing 55% Tracking	40% 49% #	40% 52%
		137	N/A		58%
	Peak-to-bkgnd compared to GS	152 122 344 444	N/A	0.84 0.72 0.85	~ 0.9
1	Count Poto		N/A	20 20 kHz &	50 kHz
4			IN/A	20-30 κπz α	
					See text

•developed technical plan to work towards these goals

- operations (energy resolution)
- high-rate capability (segment summing)
- signal decomposition (underlies P/T, tracked efficiency)

Efficiency (extended)

¹⁵²Eu: GRETINA and Gammasphere

BERKELEY

LAE