Shape coexistence along the N=Z line

Recoil Distance Method for knock-out reactions.

NSCL/Köln plunger device

Transition rates in N=Z ⁶⁴Ge

NSCL: K. Starosta, IKP Köln: A.Dewald et al. PRL 99, 042503 (2007)

CMU: M. Horoi

14

⁶⁸ Se transition rate predictions

Table 1: Comparison between the predictions for the $B(E2,2^+_1 \rightarrow 0^+_1)$ according to the models discussed in Refs. [8—12].

Model	Shell Model	Interacting	Hartree-	Self-consistent		Vampire
		Boson Model	Bogoliubov	Collective Coordinate		
Reference	[10]	[9]	[11]	[8](a)	[8](b)	[12]
$B(E2,2^+_1 \to 0^+_1) \ [e^2 fm^4]$	100	280	500	725	834	1048

- 8. N. Hinohara et al., Prog. Theor. Phys. (Kyoto) 119, 59 (2008).
- 9. F.H.Al-Khudair, Y.S.Li, G.L.Long, Phys.Rev.C 75, 054316 (2007).
- 10. M.Hasegawa *et al.*, Phys.Lett.**B** 656, 51 (2007).
- 11. T.A.War *et al.*, Eur.Phys.J.A 22, 13 (2004).
- 12. A.Petrovici *et al.*, Nucl.Phys.A710, 246 (2002).

Recoil Distance Method

Doppler-Shift Attenuation Method

Reactions for accessing nuclei along the 28<N=Z<50 line

REACTIONS	stable beams	TRIUMF unstable beams
witout neutron	⁴⁰ Ca(²⁴ Mg,2α) ⁵⁶ Ni	⁴⁰ Ca(³⁸ K,2p) ⁷⁶ Sr
detection	⁴⁰ Ca(²⁸ Si,2α) ⁶⁰ Zn	²⁸ Si(³⁸ K,2α) ⁵⁸ Cu
	⁴⁰ Ca(³² S,2α) ⁶⁴ Ge	³² S(³⁸ K,2α) ⁶² Ga
	⁴⁰ Ca(³⁶ Ar,2α) ⁶⁸ Se	⁴⁰ Ca(³⁸ K,2α) ⁷⁰ Br
	⁴⁰ Ca(⁴⁰ Ca,2α) ⁷² Kr	
with neutron	⁴⁰ Ca(⁴⁰ Ca,2p2n) ⁷⁶ Sr	⁴⁶ Ti(³⁸ K,α2n) ⁷⁸ Y
detection	⁴⁶ Ti(⁴⁰ Ca,α2n) ⁸⁰ Zr	⁵⁰ Cr(³⁸ K,α2n) ⁸² Nb
	⁵⁰ Cr(⁴⁰ Ca,α2n) ⁸⁴ Mo	⁵⁴ Fe(³⁸ K,α2n) ⁸⁶ Tc
	⁵⁴ Fe(⁴⁰ Ca,α2n) ⁸⁸ Ru	⁵⁸ Ni(³⁸ K,α2n) ⁹⁰ Rh
	⁵⁸ Ni(⁴⁰ Ca,α2n) ⁹² Pd	

channel identification is the key

comments on rates and cross sections are coming

Reactions for accessing nuclei beyond the 28<N=Z<50 line

REACTIONS	stable beams	TRIUMF unstable beams
witout neutron		
detection		
with neutron		⁴⁰ Ca(¹⁹ Ne,αn) ⁵⁴ Ni
detection		40Ca(²³ Mg,αn) ⁵⁸ Zn

<u>channel identification is the key</u> comments on rates and cross sections are coming

plunger capable of working in conjunction with the TIGRESS CsI array

Clover	Crystal	Doppler	Doppler	Fraction of	Efficiency
center	center	shift [%]	broadening [%]	efficiency	at 1 MeV [%]
45	35	2.87	0.70	0.125	1.25
45	55	2.01	1.00	0.125	1.25
90	80	0.61	1.20	0.250	2.50
90	110	-0.61	1.20	0.250	2.50
135	125	-2.01	1.00	0.125	1.25
135	145	2.87	0.70	0.125	1.25

in conjunction with DESCANT

The start: ⁶⁸ Se via ⁴⁰ Ca(³⁶ Ar,2α) reaction

GEANT4 simulation for TIP's efficiency ³⁶ Ar on ⁴⁰ Ca at 97.5 MeV

GEANT4 simulation for α efficiency ³⁶ Ar on ⁴⁰ Ca at 97.5 MeV

TIP: 75% solid angle covered

Target only: 97% solid angle covered

GEANT4 simulation for proton efficiency ³⁶ Ar on ⁴⁰ Ca at 97.5 MeV

TIP: 75% solid angle covered

Target only: 97% solid angle covered

Comments on rates and cross sections

•Cross sections:

- > are predictable, well described by fusion-evaporation statistical codes,
- > have strong dependence on the projectile energy,
- for 2α channel are on the order of a few millibarns at the max. of the excitation function, for N~Z nuclei are decreased at least by an order of magnitude for each evaporated neutron.

•Beam rates:

- > stable beams are limited to a few particle nano-ampers (10^{10}) by plunger targets,
- > unstable beam of interest have already good intensities:
 - → 2.2×10⁸ for ³⁸ K
 - → 7.2×10⁷ for ²³ Mg
 - → 1.0×10⁷ for ¹⁹ Ne
- > intensities can be expected to increase with time,
- > other beams may be developed.

Comments on the balance between sensitivity and statistics for accessing N=Z nuclei

- One better find the right one.
- Need to be optimized for each case individually based on availability of beams, targets and detectors for channel selection.
- Charged-particle evaporation channels have higher cross sections and detection efficiency, the program should take advantage of that at the start.
- Neutron-evaporation channels provide a cleaner tag at the cost of reduced overall efficiency of the setup.
- A large number N=Z of nuclei can be accessed using stable beams, the program should take advantage of that at the start.
- Unstable beams critical to go beyond the N=Z line and towards ¹⁰⁰ Sn.

•For clean particle identified spectra, lifetimes can be measured using γ -ray singles which is critical for low statistics experiments at the extreme.

Outlook

•RDM/DSAM can be used in any other region beyond the N=Z line. •RDM/DSAM can be extended to inverse kinematics reactions using EMMA for channel selection.

- > RDM for short lived, picosecond γ -ray emitting excited states.
- > RDM for short lived, picosecond proton-emitting ground states.

The TIP collaboration:

K. Starosta, C. Andreoiu, D. Cross, R. Kshetri,

G. Hackman, G. Ball, B. Davids,

R.A.E. Austin,

C.E. Svensson, P.E. Garret,

M.Bentley, R. Wadsworth.