Measurements of magnetic moments of ps states of nuclei far from stability Argonne Workshop: Aug. 8-9,2009

Argonne Workshop: Aug. 8-9,2009 Noémie Benczer-Koller Rutgers University

I will not talk about everything, namely:

Intermediate Coulomb excitation experiments at MSU with the TF technique

Recoil in vacuum (RIV) at ORNL, ANL

β-NMR, etc...

These require more instrumentation than the experiments I would like to start with, as well as complex calibrations although they are a good option for future experiments.

I will mention possible Transient Field (TF) measurements with CARIBU beams.

Measurements of magnetic moments of ps states with radioactive beams

Motivation: Microscopic structure of individual low-lying states in nuclei far from stability, with TF techniques and Coulomb excitation in inverse kinematics.

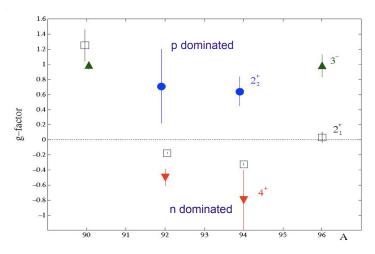
Needs: Beams: intensity ~ 10⁵ ions/sec

isobaric purity

Instrumentation: four Clovers + one Ge

solar cells or PIPS particle detectors

digital electronics


Cooled targets

Caveats: every nucleus has its own challenges stemming from

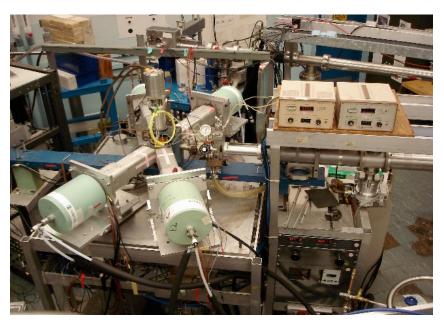
its spectroscopy

Mixed-symmetry states in Zr isotopes

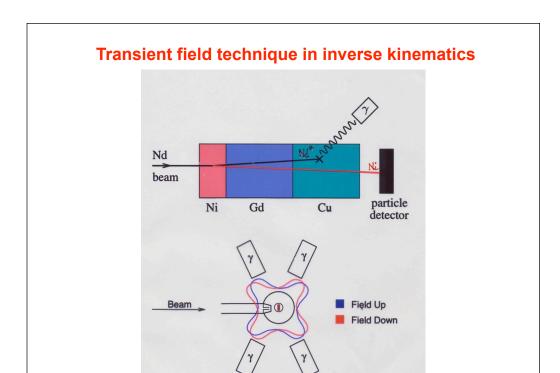
g factors of 2+, 3- and 4+ states in Zr isotopes

Neutron holes in the $g_{9/2}$ orbital

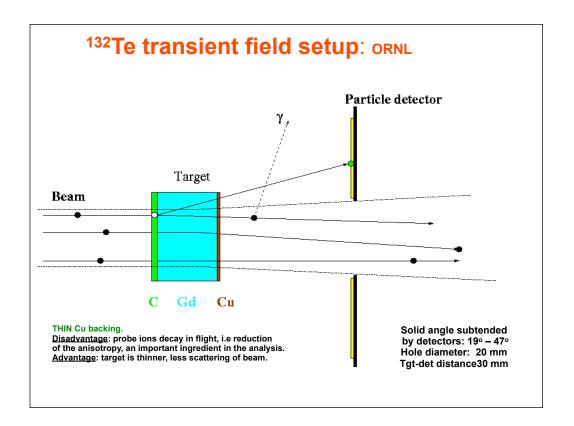
What's new?

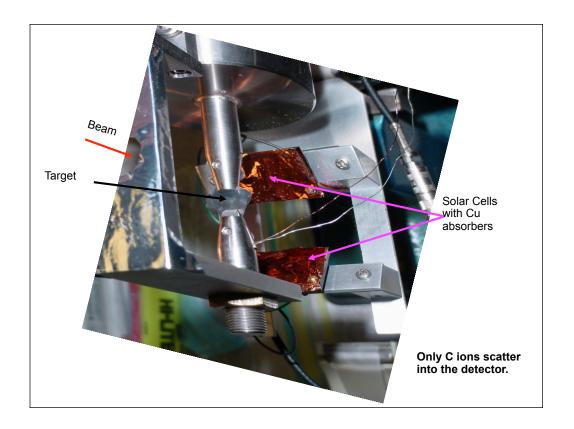

New DAQ techniques

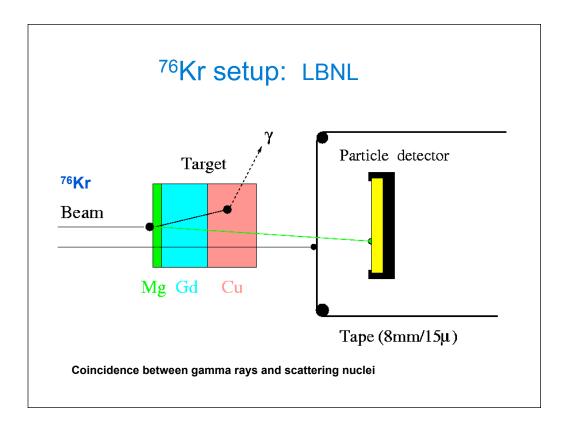
Digital electronics + Clovers


Angular correlations measured directly from the split Clover detectors simultaneously with precession measurements

4


YALE:WNSL




5

Particle – gamma coincidence mode

Examples:

76Kr LBNL Recyclotron technique 132,134,136Te ORNL ISOL production 38,40S MSU Fragmentation 38,40,42 MSU Fragmentation

ORNL

ISOL production:coming attraction

¹²⁶ Sn

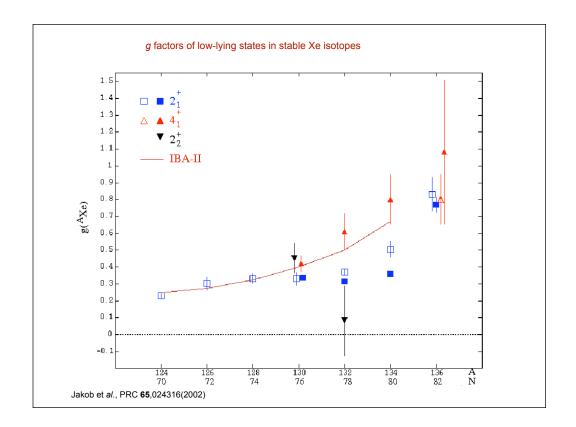
Beam intensity considerations:

Stable :1 pnA = $0.6 \times 10^{10} \text{p/s}$

$$^{132}Te$$
 $^{4 \times 10^{7}}$ ^{126}Sn $^{1 \times 10^{7}}$ ^{134}Te $^{2 \times 10^{6}}$ ^{128}Sn $^{3 \times 10^{6}}$ ^{136}Te $^{5 \times 10^{5}}$ ^{132}Sn $^{9 \times 10^{5}}$ ^{134}Sn $^{3 \times 10^{3}}$

Future at ORNL: 126 Sn

MSU campaign: Fe


Search Argonne ...

CARIBU Beam Yields for Representative Species

Updated July, 2009

2.5 mCi - summer 09 80 mCi - fall 09 1 Ci - early 10

	Isotope	Half-Life (s)	Low-Energy Beam Yield (ions/sec)	Accelerated Beam Yield (ions/sec)
*	¹⁰⁴ Zr	1.2	1.5x10 ³ / 4.8x10 ⁴ / 6.0x10 ⁵	5.3x10 ¹ / 1.7x10 ³ / 2.1x10 ⁴
	¹⁴³ Ba	14.3	$3.0 \times 10^4 / 9.6 \times 10^5 / 1.2 \times 10^7$	1.1x10 ³ / 3.4x10 ⁴ / 4.3x10 ⁵
	¹⁴⁵ Ba	4.0	1.4x10 ⁴ / 4.4x10 ⁵ / 5.5x10 ⁶	5.0x10 ² / 1.6x10 ⁴ / 2.0x10 ⁵
*	¹³⁰ Sn	222	2.5x10 ³ / 7.8x10 ⁴ / 9.8x10 ⁵	9.0x10 ¹ / 2.9x10 ³ / 3.6x10 ⁴
*	¹³² Sn	40	9.3x10 ² / 3.0x10 ⁴ / 3.7x10 ⁵	$3.5 \times 10^{1} / 1.1 \times 10^{3} / 1.4 \times 10^{4}$
*	¹³⁸ Xe	846	2.5x10 ⁴ / 7.8x10 ⁵ / 9.8x10 ⁶	1.8x10 ³ / 5.8x10 ⁴ / 7.2x10 ⁵
	¹¹⁰ Mo	2.8	1.6x10 ² / 5.0x10 ³ / 6.2x10 ⁴	5.8x10 ⁰ / 1.8x10 ² / 2.3x10 ³
	¹¹¹ Mo	0.5	8.3x10 ⁰ / 2.6x10 ² / 3.3x10 ³	0.3x10 ⁰ / 9.6x10 ⁰ / 1.2x10 ²

