Active Target - Time Projection Chamber Capabilities

Abigail Bickley Michigan State University March 18, 2009

Active Target Advantages

- Active Target:
 - Detection medium also serves as target
 - Typically gaseous
 - Thickness critical for low intensity beams & small cross sections
 - Example ³²Mg(d,p)³³Mg
 - Solid Target: CD₂ solid target requires target thickness ~500 $\mu g/cm^2$ to reconstruct recoil; $10^{19} \, atoms \, D_2 \, /cm^2$
 - Active Target: D₂ active target at 1atm, ~20 $\mu g/cm^2$; total target thickness of 1m detector is 10^{21} atoms D₂ /cm²
- Vertex & Energy Resolution:
 - Solid Target: particles must exit solid target before being tracked
 - Active Target: particle tracking begins immediately
- Efficiency:
 - Solid Target: detector geometry dependent
 - Active Target: 4π geometrical acceptance
- <u>KEY</u>: Active targets allow reactions to be conducted in inverse kinematics without loss of resolution and efficiency due to presence of target material!

Scientific Program

Measurement	Physics	Beam Examples	Beam Energy (A MeV)	Min Beam (pps)
Transfer & Resonant Reactions	Nuclear Structure	$^{32}Mg(d,p)^{33}Mg$ $^{26}Ne(p,p)^{26}Ne$	3	100
Astrophysical Reactions	Nucleosynthesis	$^{25}\text{Al}(^{3}\text{He,d})^{26}\text{Si}$	3	100
Fusion and Breakup	Nuclear Structure	$^{8}\mathrm{B}+^{40}\mathrm{Ar}$	3	1000
Fission Barriers	Nuclear Structure	¹⁹⁹ Tl, ¹⁹² Pt	20 - 60	10,000
Giant Resonances	Nuclear EOS, Nuclear Astro.	⁵⁴ Ni- ⁷⁰ Ni, ¹⁰⁶ Sn- ¹²⁷ Sn	50 - 200	50,000
Heavy Ion Reactions	Nuclear EOS	¹⁰⁶ Sn - ¹²⁶ Sn, ³⁷ Ca - ⁴⁹ Ca	50 - 200	50,000

Table 1: Overview of the AT-TPC scientific program.

- Experiments with rare isotope beams continuously push the limits of low beam intensities and low cross sections
- AT-TPC will address these limitations by providing access to reactions at beam intensities as low as 100pps
- Detector will make use of the full range of beam energies and intensities available at NSCL

Scientific Program

Physics Beam **Beam Energy** Min Beam Measurement Examples (A MeV) (pps) Nuclear Structure $^{32}Mg(d,p)^{33}Mg$ Transfer & Resonant 100 3 26 Ne(p,p) 26 Ne Reactions $^{25}Al(^{3}He,d)^{26}Si$ Astrophysical Reactions Nucleosynthesis 3 100 ${}^{8}\text{B} + {}^{40}\text{Ar}$ Nuclear Structure 3 Fusion and Breakup 1000 ¹⁹⁹Tl, ¹⁹²Pt **Fission Barriers** Nuclear Structure 20 - 60 10,000 ⁵⁴Ni-⁷⁰Ni, 50 - 200 50,000 **Giant Resonances** Nuclear EOS. 106 Sn- 127 Sn Nuclear Astro. 106 Sn - 126 Sn, Heavy Ion Reactions 50 - 200 50,000 Nuclear EOS 37 Ca - 49 Ca

Table 1: Overview of the AT-TPC scientific program.

- Experiments with rare isotope beams continuously push the limits of low beam intensities and low cross sections
- AT-TPC will address these limitations by providing access to reactions at beam intensities as low as 100pps
- Detector will make use of the full range of beam energies and intensities available at NSCL

AT-TPC Concept

- Time Projection Chambers:
 - Multiple time sampling of pads
 - Allows 3D reconstruction of high multiplicity events
 - External magnetic field results in curved charged particle tracks
 - Particle identification from measurement of dE/dx and p
 - Isotopic resolution for light particles

MAYA: Charge Projection Chamber

- Active Targets:
 - The chamber gas acts as both detector and target
 - Appropriate <u>gas identity</u> and <u>pressure</u> chosen to study the reaction of interest in inverse kinematics
 - Thick target possible without loss of energy resolution
 - Measure low energy recoil particles

- Active target and time projection chamber functionality in a single device
- Fixed Target Mode:
 - Target wheel installed within the chamber thus gas serves only as a detector
 - Configuration reflects standard TPC conditions (ex: P10 @ 1atm)
- Active Target Mode:
 - Chamber gas acts as both detector and target
 - <u>Gas identity</u> and <u>pressure</u> chosen based on experimental requirements
 - Limitations imposed by low beam intensities addressed by providing a thick target while retaining high resolution and efficiency

Chamber Design

- Cylinder length 120cm, radius 35cm
 - Constrained to center of solenoid where field is most uniform
 - Clearance retained for outer radial detector
 - Designed to sustain vacuum
- Entrance Window 1cm radius
 - Thickness dependent on gas pressure
 - Radius minimized to improve tracking efficiency
- Exit Window 33cm radius
 - Maximize acceptance for downstream ancillary detectors
- Port for removable target wheel
- Mounted on rails within solenoid

- Fixed Target Mode:
 - Device must not interfere with uniform E-field produced by equipotential field cage along the beam axis
- Active Target Mode:
 - Identity and pressure of gas used to fill the detector will be dependent upon experimental requirements.

- H₂, D₂, ³He, Ne, Ar, Isobutane
- Pressures ranging from 0.2-1.0 atm
- Ionization & e- drift depend on physical properties of gases
- Low pressure gases must sustain required HV without breakdown

Test Chamber

- Current Setup:
 - µmega
 - 10% Isobutane, 90% Ar
 - T2K electronics and daq
 - α source
- Optimize
 - Gas mixture
 - Pressure range
 - Gain
 - Position resolution
 - Pad plane geometry
 - Electron amplification
- Electronics Testing

Electron Amplification

- Micropattern Gas Detectors
 - Operating Principle:
 - High E-field gradient directs electrons from direct ionization through holes/mesh
 - Electron avalanche occurs
 - Direct charge measured on anode plane
 - Advantage
 - · High gains achieved
 - Signal comes directly from electron cascade
 - Low +ion feedback into chamber
 - Disadvantage
 - Sparking results in permanent GEM damage
 - · Sensitive to cleanliness of environment
 - Localized e⁻ cloud

Fig. 4. Gas gain as a function of the mesh voltage.

Arogancia et al, NIMA602, 403 (2009).

Mesh Voltage (V)

- Modifying T2K electronics chain w/ GET Collaboration
- Dynamic range of ADC is key due to wide range of particle species to be simultaneously identified ... 12bit AFTER+ chip will be used
- ASIC triggering capability will allow a multiplicity threshold trigger
- Sustainable 1kHz/chan data rate

Simulations

- Includes Fluctuations from:
 - Energy straggling
 - Angular straggling
 - Primary electron number
 - Longitudinal diffusion
 - Transverse diffusion
 - Electronic noise
- χ^2 calculated from known 3D track parameters
- 2σ fit results in resolution of ~100keV

- High collision multiplicity expected
- Results in data volume of :

50 kB/s*chan 500 MB/s

Zero supp, 32bits/sample, 128 time bucket, 10% occup. 10k chan, 1 kHz

AT-TPC @ NSCL

AT-TPC Outlook

- Funded through NSF MRI program
 - FY2010 design
 - FY2011 construction
 - FY2012 assembly & testing
 - FY2014 commissioning run
- First experiments will be performed with ReA3 beams
 - 4 LOIs submitted to PAC
- Move to fast fragmentation beam vault follows

AT-TPC Collaboration

Lawrence Berkeley National Laboratory

I-Yang Lee, Larry Phair

Lawrence Livermore National Laboratory Mike Heffner

> <u>University Notre Dame</u> Umesh Garg, Jim Kolata

<u>Michigan State University</u> Abigail Bickley*, Bill Lynch, Wolfgang Mittig, Fernando Montes, Gary Westfall

> Saint Mary's University (Canada) Rituparna Kanungo

Western Michigan University Michael Famiano

Triggering

- Beam trigger -
 - Provided by PPAC & RF-ToF before beam enters chamber
- Internal trigger -
 - Discriminator incorporated in TPC electronics to be used as a threshold trigger
 - Will allow 3D hit multiplicity threshold cut to be applied online
 - Necessary for experiments with low energy products that do not exit the chamber
 - Will allow online centrality trigger based on collision multiplicity for heavy ion reactions experiments
- External trigger -
 - Downstream calorimeter to measure Z of leading particle
 - Primarily for heavy ion reactions

PID & Magnetic Field

- Stopped particles:
 - Identified based on dE/dx vs E_{tot}
 - Total energy determined by range
- Exiting particles:
 - Energy deposition and radius of curvature of each particle species is unique
 - Allows momentum of particle to be determined
 - Particle species and charge state identified
- Dynamic range sufficient to simultaneously measure pions → light isotopes

Simulation w/ STAR resolution, scaled to EOS

TWIST Solenoid at NSCL

TWIST Solenoid

- Superconducting solenoid
- 2 Tesla Field
- Bore Dimensions:
 - 105 cm diameter
 - 229 cm length
 - 107 cm beam height (w/o yoke)
 - 130 cm beam height (w/ yoke)
- Field Non-uniformity: < 1%

Gas Distribution

Objectives:

- Maintain two component mixtures at predefined ratios (³He 90% + CO₂ 10%)
- Gas dependant on experimental needs: ³He, ⁴⁰Ar, ⁵⁸Ni, D₂, H₂, P10
- Gas pressure: 5-760 Torr

System parameters:

- AT-TPC Volume
- Mixtures
- Pressure
- Pressure uncertainty
- O_2 and H_2O contaminants <20ppm

Considerations:

- Gas recirculation required for \$\$ gases
- Out gassing of detector components
- Fast flow rate limits buildup of contaminants
- Aging effects of detector materials in H_2 gas
- Flammable gas safety

Bickley

4601

 D_2

<1%

 $^{3}\text{He} + \text{CO}_{2}$

5-760 Torr

Calibration

- Goal: Achieve maximum resolution
- Consequence: Must understand all sources of field distortions
 - Variation in drift velocity caused by gas mixture, temperature, pressure and electric field changes
 - \star Space charge buildup
 - Radial inhomogenities of E and B fields
 - Misalignment of E and B fields
- Problematic for:
 - High multiplicity expts
 - Beam ionization

Calibration

- Solution: Use narrow UV laser beam to simulate straight charged particle tracks in chamber
 - Independent of multiple scattering
 - Independent of magnetic field
 - Distribute tracks throughout chamber
- UV laser excites two photon ionization in organic contaminants
- Use frequency quadrupled Nd:YAG laser
 - Beam diameter = 30mm
 - Wavelength = 266nm
 - Energy density 1-20µJ/mm²
 - Pulse length 3ns
- Predefined event fraction dedicated to lasel

 calibration events

STAR Experiment

(Abele, et al., NIMA 499, 692, 2003)

22