

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

The Fragment Mass Analyzer (FMA) and The Study of Proton Emitters

Darek Seweryniak filling in for Cary N. Davids ATLAS 25th Anniversary Celebration October 22, 2010

What Can a Recoil Separator Do for Us?

- Separates reaction products from primary beam particles at 0°.
- Focuses and disperses the reaction products at the focal plane by M/Q (Mass/Charge). The M/Q groups are physically separated from one another.
- With achromatic optics, we can measure particle energy using time-of-flight, since, for a given energy, all paths are isochronous.

Fragment Mass Analyzer (FMA)

Ion Optics of the FMA

The FMA at ATLAS

FMA Focal Plane M/Q Spectrum

Types of Experiments Performed at the FMA

- Fusion-evaporation reactions at 0°, e.g. ⁹²Mo(⁷⁸Kr,p2n)¹⁶⁷Ir
- Transfer reactions, e.g. ²H(⁵⁶Ni,p)⁵⁷Ni, ⁴He(⁴⁴Ti,p)⁴⁷V.
- Radiative capture reactions, e.g. $H(^{18}F,\gamma)^{19}Ne$

Chronology I

- Proposal prepared for DOE in 1986, based on Legnaro design having one quadrupole doublet at the entrance. Submitted to DOE June 1986.
- Competition with ORNL. Approval awarded to ANL in summer 1987.
- Immediately began design study with consultant Dan Larson. Tried symmetric quadrupole doublets, which showed performance vastly improved over just one.
- Prepared Request for Quotations, sent to vendors in the spring of 1988.

Chronology II

 FMA Contract awarded to Bruker GmbH in Karlsruhe in summer of 1988. Includes 2 quadrupole doublets, 2 electric dipoles, 1 60 degree bending magnet, Hall probe magnetometer, all magnet power supplies. Expected delivery: 1 year.

 New addition to Target Room 3 ready in early 1989.

Chronology IV

 Developed internal 300 kV power supplies for electric dipole. Shipped to Karlsruhe along with vacuum equipment in 1989 for factory tests on dipoles. Conditioned up to 255.5 kV on each plate (511 kV across gap). Assistance on various trips provided by Birger Back, Walter Kutschera, and Thomas Happ.

Chronology V

• FMA components delivered in the summer of 1990 (2 years). Immediately began assembly.

Chronology VI

- A few months into assembly, a safety incident at ATLAS caused a shutdown of the accelerator (Tiger Teams descended on ATLAS). This benefited the FMA assembly because technical manpower was available whenever needed.
- FMA assembly was completed in the summer of 1991. Obtained the first mass spectrum in August, aided by Akunuri Ramayya, Birger Back, and Walter Kutschera.

FMA status as of 8am 10/22/2010

Spontaneous Proton Emission one of the early experimental programs in collaboration with Univ. of Edinburgh

- \checkmark Analogous to α decay
- ✓ No pre-formation factor

 \checkmark Decay rates sensitive to $E_{\rm p}$ and $I_{\rm p}$

 ✓ Unique laboratory to study tunneling through a 3D barrier

 ✓ Source of information on nuclear structure and masses far from stability

Proton Decay Observables

Proton emitter landscape

ANL-P-22,108

- 15 new isotopes!
- ~20 mass units away from the line of stability
- Often less exotic neighbors not known

new subfield in nuclear structure emerged and even triggered a series of conferences on proton emitting nuclei

¹⁶⁷Ir – 1st new proton emitter observed at ATLAS June 1994

Experiment to search for ¹⁷¹Ag ⁷⁸Kr+⁹⁶Ru->¹⁷¹Ag+p2n Instead found: ¹⁶⁷Ir+αp2n

Deformed proton emitters at ANL

- ✓ Spherical
- ✓ Axially deformed
- ✓ Odd-odd axially deformed
- Coupling to vibrations
- Non-axial deformation

Theory by C.N. Davids and H. Esbensen

First deformed proton emitters Anomalous decay rates explained by introducing deformation

First fine structure

C.N. Davids et al., PRL C55 (1997)2255A. Sonzogni et al., PRL 83 (1999)1116

Rotational bands in the deformed proton emitter ¹⁴¹Ho

D. Seweryniak et al., PRL C86(2001)1458

¹²¹Pr proton emitter recent developments

A. Robinson et al., PRL 95, (2005) 032502

M.C. Lopes et al., Phys. Lett. B 673 (2009) 15

To be continued ...

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Highlights of Research with the FMA and Future Perspectives

Darek Seweryniak for FMA "collaboration" ATLAS 25th Anniversary Celebration October 22, 2010

Research with the Fragment Mass Analyzer

Experiments with the Fragment Mass Analyzer

- From ¹⁰Be to ²⁵⁷Rf
- Mostly proton- but also neutron-rich nuclei
- Stable and radioactive beams
- Stable and radioactive targets
- Radiative capture, transfer, fusion-evaporation and everything in between
- In-beam spectroscopy at the target position
- Decay spectroscopy at the focal plane
- Nuclear structure, reactions, astrophysics, …

Selected results obtained with the FMA

Fragment Mass Analyzer

GAMMASPHERE+FMA

GAMMASPHERE and FMA with its auxiliary detectors is a unique combination of a large γ -ray efficiency and high reaction channel selectivity.

Implementation of a novel technique **Recoil-Decay Tagging** resulted in observation of many exotic nuclei across the nuclidic chart.

Recoil-Decay Tagging

Spectroscopy of Trans-Fermium Nuclei

Chart courtesy of Y. Oganessian

²⁵⁴No – first in-beam spectrum in a Transfermium nucleus

²⁵⁴No - Entry point distribution

VOLUME 84, NUMBER 16 PHYSICAL REVIEW LETTERS 17 APRIL 2000

Entry Distribution, Fission Barrier, and Formation Mechanism of ²⁵⁴₁₀₂No

P. Reiter,^{1,2} T. L. Khoo,¹ T. Lauritsen,¹ C. J. Lister,¹ D. Seweryniak,¹ A. A. Sonzogni,¹ I. Ahmad,¹ N. Amzal,³
P. Bhattacharyya,⁴ P. A. Butler,³ M. P. Carpenter,¹ A. J. Chewter,³ J. A. Cizewski,^{1,5} C. N. Davids,¹ K. Y. Ding,⁵
N. Fotiades,⁵ J. P. Greene,¹ P. T. Greenlees,³ A. Heinz,¹ W. F. Henning,¹ R.-D. Herzberg,³ R. V. F. Janssens,¹
G. D. Jones,³ H. Kankaanpää,⁷ F. G. Kondev,¹ W. Korten,⁶ M. Leino,⁷ S. Siem,^{1,8} J. Uusitalo,¹
K. Vetter,⁹ and I. Wiedenhöver¹

²Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany ³University of Liverpool, Liverpool L69 7ZE, England ⁴Purdue University, West Lafayette, Indiana 47097 ⁵Rutgers University, New Brunswick, New Jersey 08903 ⁶DAPNLA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France ⁷University of Jyväskylä, Jyväskylä, Finland ⁸University of Oslo, Oslo, Norway ⁹Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Received 3 January 2000)

2010 experiment – G. Henning et al.

Maximum spin 22 hbar Shell-correction persists at high spin Fission barrier > 5MeV

Argonne

(888)

146 44

0

Stringent test of spe including the states relevant for the shell gaps in super-heavy nuclei

52

¹⁰⁰Sn region experimental status

¹⁰¹Sn prompt γ rays

N=51 isotones

FMA upgrades preparation for intense beams after energy and intensity upgrade

Beam dump

High-granularity DSSD

Digital GAMMASPHERE

GRETINA Digital electronics

GRETINA at the FMA

AGFA – Argonne Gas Filled Analyzer FMA little brother

Large efficiency, no mass resolution

Optics by D. Potterveld

Target distance 40 cm $- \theta x=55$ mrad / $\theta y=155$ mrad Target distance 80 cm $- \theta x\sim45$ mrad / $\theta y=100$ mrad small focal plane In-beam and decay spectroscopy

Possible experiments

- Proton decay, 2p decay
- Super-allowed alpha decay chain ¹⁰⁸Xe-¹⁰⁴Te-¹⁰⁰Sn
- Excited states in ¹⁰⁰Sn
- Secondary fusion-evaporation reactions with in-flight radioactive beams
- Z>102 nuclei

. . .

I Ahmad B. Back M.P. Carpenter C.N. Davids S. Fischer C.L. Jiang **R.V.F.** Janssens T.L. Khoo F.G. Kondev T. Lauritsen C.J. Lister E. Rehm J. Schiffer D. Seweryniak S. Zhu ANI P.J. Woods T. Davinson University of Edinburgh W.B. Walters University of Maryland P. Chowdhury Lowell

Postdocs

D. Ackermann D. Blumenthal S.J. Freeman A. Heinz D. Hofmann G. Mukherjee V. Nanal G.L. Poli P. Reiter A. Robinson A. Sonzogni I. Stefanescu S. Tandel J. Uusitalo I. Wiedenhoever Ch. Chiara L. McCutchan C. Hoffman A. Rogers

. . .

Students

- G. Henning N. Hoteling R.J. Irvine G. Lotay H. Mahmud P. Munro J.J. Ressler
- J. Shergur
- S. Siem
- • •

Technical support

- B. DiGiovine
- J. Falout
- J. Greene
- J. Joswick
- D. Henderson
- B. Nardi
- T. Pennington
- B. Schumard
- J. Rohrer
- P. Wilt

. . .

Without dedicated ATLAS crew none of these experiments would be possible.

Thank you and Happy Anniversary!

Thank you for your attention!

