

The future of nuclear structure: at ATLAS

Will γ-rays be useful tools?

C.J. (Kim) Lister Argonne Physics 10-23-2010

The Nuclear Structure Challenge

C.J. (Kim) Lister ... ATLAS 25th Year Celebration at Argonne 23rd October 2010

The Nuclear Structure Challenge

Schematic Nuclear Potentials

Where to start?

Ab-initio Greens Functional Monte Carlo Calculations

0

Three body forces in nuclei

From Fujita and Miyazawa (1956).

But now the potentials are being refined..... A real "work in progress"

 $\frac{\text{Urbana Potentials:}}{V_{ijk}} = V_{ijk}^{2\pi} + V_{ijk}^{R.C.}$

Steven C. Pieper *et al.*, Phys. Rev. C **64**, 014001 (2001).

Coupling constants are currently fit to binding energies of a few light nuclei... ~4 parameters

Progress of Theoresical Physics, Vol. 17, No. 3, March 1957 Pion Theory of Three-Body Forces Jun-ichi FUJITA and Hironari MIYAZAWA Department of Physics, University of Tokyo, Tokyo (Received October 27, 1956) What can experimentalists do to "help" with the theoretical developments?

- Discuss what measurements will make a difference.
- Make really good precise measurements.
- Ask lots of dumb questions.

• Be persistent.

For refinement of the ab-initio calculations "alpha clustered" nuclei... like He, Be and C isotopes are especially important.

The Special Case of A=10

By mass 10, the nuclei have several bound states (¹⁰C has 1, ¹⁰Be has 6) and so probing the wavefunctions through investigating electromagnetic transitions becomes relevant.

What is the role of the neutrons?

Why did Kurath (1957) need to use an anomalously large spin-orbit splitting?

Is the role of protons in ¹⁰C the same as the neutrons in ¹⁰Be?

¹⁰C and ¹⁰Be: What do we know?

Lifetimes of Levels in A = 10 Nuclei*

T. R. FISHER, S. S. HANNA, D. C. HEALEY, AND P. PAUL[†] Department of Physics, Stanford University, Stanford, California 94305 (Received 6 June 1968)

The Doppler-shift attenuation method was used to obtain the following mean lifetimes (in psec) for the indicated nuclear levels: ${}^{10}C(3.36)$, $\tau=0.155\pm0.025$; ${}^{10}B(3.59)$, $\tau=0.150\pm0.015$; ${}^{10}Be(3.37)$, $\tau=0.189$ ± 0.020 ; ${}^{10}B(2.15)$, $\tau=2.7_{-0.4}^{+0.5}$. A limit of $\tau<30$ fsec is obtained for ${}^{10}B(1.74)$, which is a factor of 8 greater

The situation in 1968

Δ

And the Doppler Shift is ...

Current situation in A=10

¹⁰Be wavefunctions, exchange n for p in B(E2) calculation

Separate GFMC minimization of wavefunctions for ¹⁰C

Light Nuclei

We are in a new domain of theory....more microscopic and parameter free. We need a new generation of experiments to match.

For the A=10 puzzle We need a high quality measurement of ¹⁰B

Electromagnetic transitions are very sensitive probes of nuclear wavefunctions.

PRECISION is good..... Always. (<5%)

Experimental challenges:

Leading systematic error lies in targetry Need to nano-fabricate Apply new technique to other problems across mass surface.

Theory challenges:

Better convergence issues, better 3-body interactions. "Export" of Ab-Initio wisdom to Shell Model and beyond.

The Heaviest Elements

A Self-Consistency Effect

GRETINA@ATLAS

Coming in 2013

Ideal for very heavy element spectroscopy

Ideal for ¹⁰⁰Sn

Efficient and fast-counting

The Nuclear Structure Challenge

FRIB Conceptual Overview

- Rare isotope production with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Experimental areas and scientific instrumentation for fast, stopped and reaccelerated beams
- Beam power ramps from 10 kW in year 1 to 400 kW in year 4

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science

Michigan State University

CARIBU

Gives ATLAS real "reach" into the neutron-rich world of nuclei

New Physics New Techniques New Generation

The X-Array

For spectroscopy when cross-sections are low and every count counts.

TWICE the efficiency of Gammasphere

Gammasphere

Deep Inelastic Transfer as a tool for structure studies

PHYSICAL REVIEW C 79, 034319 (2009)

Levels above the $19/2^{-1}$ isomer in ⁷¹Cu: Persistence of the N = 40 neutron shell gap

I. Stefanescu,^{1,2,3} W. B. Walters,¹ R. V. F. Janssens,² N. Hoteling,^{1,2} R. Broda,⁴ M. P. Carpenter,² B. Fornal,⁴ A. A. Hecht,^{1,2} W. Krolas,^{4,5} T. Lauritsen,² T. Pawlat,⁴ D. Seweryniak,² J. R. Stone,^{1,6} X. Wang,^{2,7} A. Wöhr,^{1,2} J. Wrzesinski,⁴ and S. Zhu²

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 79, 061303(R) (2009)

Lifetime of the $K^{\pi} = 8^{-}$ isomer in the neutron-rich nucleus ¹⁷⁴Er, and N = 106 E1 systematics

G. D. Dracoulis,^{1,*} G. J. Lane,¹ F. G. Kondev,² H. Watanabe,³ D. Seweryniak,⁴ S. Zhu,⁴ M. P. Carpenter,⁴ C. J. Chiara,^{2,†} R. V. F. Janssens,⁴ T. Lauritsen,⁴ C. J. Lister,⁴ E. A. McCutchan,⁴ and I. Stefanescu^{4,5}

Conclusions

An upgraded ATLAS will be relevant for nuclear structure studies:

Intense stable beams for the proton dripline and heavy nuclei Intense stable beams for Multi-Nucleon transfer reactions Intense stable beams for "in-flight" production of exotic nuclei. Accelerated fission-fragment beams

A new generation of experimental techniques. A new generation of experimenters.

Unfinished business: Nuclear Structure at Argonne

