Accelerator Mass Spectrometry (AMS) at ATLAS

Walter Kutschera

Vienna Environmental Research Accelerator (VERA) Fakultät für Physik, Universität Wien, Austria

> ATLAS 25th Anniversary Celebration Physics Division, Argonne National Laboratory

> > 22-23 October 2010

AMS at ATLAS over the years

Year	Radioisotope	Accelerator	Горіс
1979	¹⁴ C, ²⁶ AI, ³² Si, ³⁶ CI	Tandem	Detection with split-pole spectrograph
1980	³² Si	Tandem	Half-life measurement (101 yr)
1980	²⁶ AI	Tandem	Cross section ²⁶ Mg(p,γ) ²⁶ Al
1983	⁴⁴ Ti	Tandem	Half-life measurement (54 yr)
1984	B , C , O	Tandem	No evidence found (<10 ⁻¹⁵)
1984	⁶⁰ Fe	Tandem+Linac	Half-life measurement (1.5x10 ⁶ yr)
1984	Free quarks	Injector Fermi Lab	Cryogenic search for free quarks
1987	⁴¹ Ca	Tandem+Linac+GFM	I Developing a ⁴¹ Ca dating method
1993	⁵⁹ Ni	Tandem+Linac+FS	Solar CR alphas in moon rocks
1994	³⁹ Ar, ⁸¹ Kr	ECR+Linac+GFM	Developing a detection method
2000	⁸¹ Kr	NSCL (MSU)+FS	Groundwater dating
2000	²³⁶ U	ECR+Linac+FMA	²³⁶ U from ²³⁵ U (n,γ)
2004	³⁹ Ar	ECR+Linac+GFM	Dating of ocean water (circulation)
2005	⁶³ Ni	ECR+Linac+GFM	Cross section of ⁶² Ni(n,γ) ⁶³ Ni
2008	³⁹ Ar	ECR+Linac+GFM	Ar with "no" ³⁹ Ar (dark matter search)
2009	¹⁴⁶ Sm	ECR+Linac+GFM	Half-life meas. (~10 ⁸ yr), p-process

People from Argonne involved with AMS over the years

I. Ahmad, D. Berkovits, P. J. Billquist, F. Borasi, J. Caggiano, P. Collon, C. N. Davids, D. Frekers, B. G. Glagola, J. P. Greene, R. Harkewicz, B. Harss, A. Heinz, D. J. Henderson, W. Henning, C. L. Jiang, W. Kutschera, M. Notani, R. C. Pardo, N. Patel, M. Paul, K. E. Rehm, R. Rejoub, J. P. Schiffer, R. H. Scott, D. Seweryniak, K.W. Shepard, S. Sinha, A. Sozogni, E. J. Stephenson, X, Tang, J. Unsitalo, R. Vondrasek, J. L. Yntema

AMS at ATLAS over the years

Year	Radioisotope	Accelerator 1	Горіс
1979	¹⁴ C, ²⁶ AI, ³² Si, ³⁶ CI	Tandem	Detection with split-pole spectrograph
1980	³² Si	Tandem	Half-life measurement (101 yr)
1980	²⁶ AI	Tandem	Cross section ²⁶ Mg(p,γ) ²⁶ Al
1983	⁴⁴ Ti	Tandem	Half-life measurement (54 yr)
1984	B , C , O	Tandem	No evidence found (<10 ⁻¹⁵)
1984	⁶⁰ Fe	Tandem+Linac	Half-life measurement (1.5x10 ⁶ yr)
1984	Free quarks	Injector Fermi Lab	Cryogenic search for free quarks
1987	⁴¹ Ca	Tandem+Linac+GFM	Developing a ⁴¹ Ca dating method
1993	⁵⁹ Ni	Tandem+Linac+FS	Solar CR alphas in moon rocks
1994	³⁹ Ar, ⁸¹ Kr	ECR+Linac+GFM	Developing a detection method
2000	⁸¹ Kr	NSCL (MSU)+FS	Groundwater dating
2000	²³⁶ U	ECR+Linac+FMA	²³⁶ U from ²³⁵ U (n,γ)
2004	³⁹ Ar	ECR+Linac+GFM	Dating of ocean water (circulation)
2005	⁶³ Ni	ECR+Linac+GFM	Cross section of ⁶² Ni(n,γ) ⁶³ Ni
2008	³⁹ Ar	ECR+Linac+GFM	Ar with "no" ³⁹ Ar (dark matter search)
2009	¹⁴⁶ Sm	ECR+Linac+GFM	Half-life meas. (~10 ⁸ yr), p-process

First AMS Paper from Argonne: W. Kutschera, W. Henning, M. Paul, E.J. Stephenson, J. L. Yntema, *Radiocarbon* 22/3 (1980) 807

OPERATED UNDER CONTRACT W-31-109-ENG-38 FOR THE U.S. DEPARTMENT OF ENERGY

INTRODUCTION

The area of accelerator mass spectrometry has expanded considerably over the past few years and, in our opinion, indeed established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester, and we felt it timely to gather and discuss the recent developments and present status of the field. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of which 26 ere f m outside the United States. The present proceedings the program and excitement of the field. Papers ar ...

members of the program committee and all participants of the meeting for contributing to its success.

Walter Henning Walter Kutschera Robert K. Smither Jan L. Yntema (The Organizing Committee)

The Concept of Radiocalcium Dating

Calcium-41 Concentration in Terrestrial Materials: Prospects for Dating of Pleistocene Samples W. Henning, W. A. Bell, P. J. Billquist, B. G. Glagola, W. Kutschera, Z. Liu, H. F. Lucas, M. Paul, K. E. Rehm, J. L. Yntema, *Science* 236 (1987) 725

Detection of natural ⁴¹Ca/Ca ratio using an enrichment process similar to the first detection of ¹⁴C by W. F. Libby 40 years earlier [Phys. Rev. 72 (1947) 931].

Table 2. Summary of the results of ⁴¹Ca abundances. The values measured with AMS were divided by the pre-enrichment factor to obtain the original ⁴¹Ca abundances.

⁴¹ Ca/Ca ratio measured with AMS	Pre-enrichment factor	Original ⁴¹ Ca/Ca ratio
$(4.4 \pm 1.0) \times 10^{-12}$	1	$(4.4 \pm 1.2) \times 10^{-12}$
$(5.2 \pm 0.2) \times 10^{-10}$	152	$(3.4 \pm 0.5) \times 10^{-12}$
$(3.0 \pm 0.6) \times 10^{-12}$	151	$(2.0 \pm 0.5) \times 10^{-14}$
$(8.8 \pm 4.4) \times 10^{-13}$	116	$(7.6 \pm 4.5) \times 10^{-15}$
$(4.0 \pm 1.9) \times 10^{-13}$	117	$(3.4 \pm 2.1) \times 10^{-15}$
≤5.8 [×] 10 ⁻¹⁴	1	(3.4×10^{-15})
	$\begin{array}{r} {}^{41}\text{Ca/Ca ratio} \\ \text{measured with AMS} \\ \hline (4.4 \pm 1.0) \times 10^{-12} \\ (5.2 \pm 0.2) \times 10^{-10} \\ \hline (3.0 \pm 0.6) \times 10^{-12} \\ \hline (8.8 \pm 4.4) \times 10^{-13} \\ \hline (4.0 \pm 1.9) \times 10^{-13} \\ \leqslant 5.8 \times 10^{-14} \end{array}$	41 Ca/Ca ratio measured with AMSPre-enrichment factor $(4.4 \pm 1.0) \times 10^{-12}$ 1 $(5.2 \pm 0.2) \times 10^{-10}$ 152 $(3.0 \pm 0.6) \times 10^{-12}$ 151 (8.8 \pm 4.4) $\times 10^{-13}$ $(4.0 \pm 1.9) \times 10^{-13}$ 116 (4.0 $\pm 1.9) \times 10^{-13}$ $(4.0 \pm 1.9) \times 10^{-14}$ 1

W. K. et al., Studies Towards a Method for Radiocalcium of Bones, Radiocarbon **31/3** (1989)311-323

Overview of ⁴¹Ca measurements at Argonne, GSI, Penn, Rehovot

W.K., Nucl. Instr. Meth. B50 (1990) 252-261

A possible solution: Absolute ⁴¹Ca dating?

⁴¹ Ca decays by electron capture:	$^{41}\text{Ca} + \text{e-} \rightarrow {}^{41}\text{K}^{\star} + \nu_{e}$
Exponential decay of ⁴¹ Ca:	${}^{41}Ca_t = {}^{41}Ca_o \times e^{-\lambda/t}$
The sum of parent and daughter is:	${}^{41}Ca_o = {}^{41}Ca_t + {}^{41}K_t^*$ (radiogenic)
The age is then independent of ⁴¹ Ca _o :	$t = 1/\lambda \times \ln(1 + {}^{41}C_t/{}^{41}K_t^*)$
The problem which has to be solved:	How to distinguish ⁴¹ K* from ubiquitus environmental ⁴¹ K
Perhaps this may work:	The recoil energy of 41 K* after EC due to the emission of v_e is only +2.2 eV.
In bone, Ca forms apatite crystals:	$Ca_5(PO_4)_3(OH)$

A possible solution: Absolute ⁴¹Ca dating?

⁴¹ Ca decays by electron capture:	$^{41}\text{Ca} + \text{e-} \rightarrow {}^{41}\text{K}^{\star} + \nu_{e}$
Exponential decay of ⁴¹ Ca:	${}^{41}Ca_t = {}^{41}Ca_o \times e^{-\lambda/t}$
The sum of parent and daughter is:	${}^{41}Ca_o = {}^{41}Ca_t + {}^{41}K_t^*$ (radiogenic)
The age is then independent of ⁴¹ Ca _o :	$t = 1/\lambda \times \ln(1 + {}^{41}C_t/{}^{41}K_t^*)$
The problem which has to be solved:	How to distinguish ⁴¹ K* from ubiquitus environmental ⁴¹ K
Perhaps this may work:	The recoil energy of 41 K* after EC due to the emission of v_e is only +2.2 eV.
In bone, Ca forms apatite crystals:	$Ca_5(PO_4)_3(OH)$

Perhaps ⁴¹K* will stay inside the apatite crystals, and can thus be detected after selective chemistry has dissolved everything else of the bone matrix.

Measuring the interaction of soft alpha particles from solar cosmic rays with the surface of the moon

W.K. et al., Nucl. Instr. Meth. 73 (1993) 403

from	iron in l	unar.	sur face	rocks	
⁵⁸ Ni ⁵⁹ Ni 6.27% 76,000	n ⁶⁰ Ni Oyr 26.10	⁶¹ Ni 1.13	⁶² Ni 3.59	⁶³ Ni 100yr	⁶⁴ Ni 0.91
α	⁵⁹ Co 100		4 8.		л -2
⁵⁶ Fe ⁵⁷ Fe 91.72 2.1	• ⁵⁸ Fe 0.28				
evoid: 59 Col 60-64 Ni ((p, n) 59 N; (p, spall) 59 N	li			

Apollo 16 flight to the Moon (16-27 April 1972) Lunar Module Orion, with John W. Young working at the Lunar Rover

Separation of 59 Ni from by full stripping W. K. et al. NIM B73 (1993) 403-412 Magnet Carbon foil 28+ 27+ 26+ 25+

39 Ar (t_{1/2} = 269 yr) the ideal tracer to study ocean dynamics

Studying the Dynamics of the Oceans with two different cosmogenic radioisotopes

¹⁴C and ³⁹Ar key data

Production rate of long-lived cosmogenic radionuclides

Half-life

¹⁴C: 5730 years ³⁹Ar: 269 years

Atmospheric isotope ratios

 $^{14}C/ ^{14}C = 1.2 \times 10^{-12}$

 39 Ar/ 40 Ar = 8.1×10⁻¹⁶

Ocean water concentrations

¹⁴C: 1.8×10^9 atoms/litre $\rightarrow 0.4$ decays/min ³⁹Ar: 6.5×10^3 atoms/litre $\rightarrow 17$ decays/year

Low Level CountingAMS ^{14}C : 250 litre H2O0.5 litre H2O ^{39}Ar : 1500 litre H2O20 litre H2O?

³⁹Ar detection with ATLAS

[P. Collon et al., Nucl. Instr. Meth. B 223-224 (2004) 428]

Isobar separation of ³⁹Ar(Z=18) from ³⁹K (Z=19) in the gas-filled magnetic spectrograph

Dating of deep ocean water with ³⁹Ar (t_{1/2} = 269 a) using AMS

Sample: SAVE #95 Water depth = 4717 m ${}^{39}Ar/{}^{40}Ar = (2.6 \pm 0.6) \times 10^{-16}$ = 32% atmospheric Ar "Age" (decay) = 440 years

P. Collon, T.-Z. Lu, W. K. Ann.Rev. Nucl.Part. Sci. 54 (2004) 39-67

Results of ³⁹Ar/⁴⁰Ar measurements at Argonne

Sample	³⁹ Ar/ ⁴⁰ Ar (10 ⁻¹⁶)	Fraction of atm. argon*	"Decay age" (years)	
Neutron activated argon	580 ± 40			
Atmospheric argon	7.7 ± 0.9	95%		
South Atlantic Ventilation Experiment				
#294, water depth = 850 m	5.2 ± 0.7	65%	170	
#294, water depth = 5000 m	3.5 ± 0.6	44%	320	
#95, water depth = 4717 m	2.6 ± 0.6	32%	440	
Great Artesian Basin, Australia, Watson				
creek well, ground water (0.4 Myr)	0.4 ± 0.2	5%	1200	
Atmospheric argon*	8.5 ± 1.2	105%		
Neutron activated argon	600 ± 40			

*Normalized to 39 Ar/ 40 Ar = 8.1x10⁻¹⁶ = 100%, measured by Low Level Counting (Loosli)

Collon et al., Nucl. Instr. Meth. B 223-224 (2004) 428-434

Pushing the detection limit of ³⁹Ar into the realm of interest for dark matter searches with liquid argon

Desired (F. Calaprice, Princeton): 39 Ar/Ar ~ 10⁻³ x (39 Ar/Ar)_{atmosphere} ~ 1x10⁻¹⁸

A lost battle against the isobaric background of ⁴¹K

The quartz liner of the ECR source

RR231

10230

HIGH VOLTAGE

One person works – the other watches

Sometimes things just don't work out

A T L ATOR ACCELERATOR OPERATENSIDES

.3058 0/Box 1. Box

KINTECH

905

The future:

³⁹Ar detection with the magneto optical trap technique (P. Mueller, Z.-T. Lu et al.)

Once you cross the ocean, You are forever on the wrong side.

Victor Weisskopf