ATLAS 25th Anniversary

ILLINOIS INSTITUTE OF TECHNOLOGY

APEX and the Uranium Upgrade

Russell Betts

October 22nd, 2010 Physics Division Argonne National Laboratory

Preparing Minds www.iit.edu/csl/

High Field QED ($Z\alpha > 1$)

"SUPERCRITICAL" ATOMS

STATIC ATOM.

Vacancies Appear as Positrons Spontaneously and Dynamically Produced in Strong Time-Varying EM Fields

College of Science and Letters

High Field QED

GSI Experiments Singles Positrons

College of Science and Letters

GSI Experiments

GSI Experiments Coincidence e⁺ e⁻ Pairs

Sharp Sum Energy Lines Decay of Slow Moving Neutral Object (M~2MeV) into Near-Equal-Energy Back-to-Back Pairs

New Light Scalar Particle ?? Continuum State of Positronium ?? Exotica ??

GSI Experiments

The ATLAS Uranium Upgrade

- ECR Source for High Charge State Uranium
- Lo- β Linacs Novel Resonator Designs
- Injecting into Existing ATLAS
- ATLAS Positron Experiment (APEX)
 - Large Solid Angle and Efficiency
 - Excellent $e^+ e^-$ Separation (1 in 10⁵)
 - High Resolution in Energy and Angle for e⁺ e⁻
 - Heavy Ion Scattering Measurement
 - High Data Rate (10pnA U)

ATLAS Upgrade and APEX

RB, DG and JS go to see Dave Hendrie

An Early Concept

The APEX Proposal

& Chicago Queen's Rochester U Washington

\$2.34M Including Contingency

APEX Proposal

Final APEX Concept

Final APEX Concept

APEX Responsibilities

- Argonne ATLAS, Project Management, Silicon Arrays
- ANL/Chicago Trigger Electronics
- Florida State Rotating Target Wheel
- MSU Heavy Ion Array, Silicon Preamps, Electronics, Coils
- Princeton Solenoid and Vacuum Vessel
- U Washington Silicon Cooling, Monitors
- Yale Annihilation Radiation Detector

Responsibilities

Design

Construction

Construction

The Real Thing

Silicon Array

Highly Segmented Silicon Efficient for 100 keV< E < 1 MeV Excellent Energy Res <10keV Excellent Timing < 1ns

> 1 mm Thick Si Cool to LN₂ Temperature In 10⁻⁶ Torr Vacuum Custom Preamps FERA Readout

Silicon Array

Delicate Adjustment

Silicon Array

A Handsome (& Young) Crew

Aluminum Foil

Heavy Ion Array & e/Gamma Stops

Performance with Sources

E0 transition in ⁹⁰Zr:

Source Data

INTRA-LABORATORY NEWO

RB copy-

ARGONNE NATIONAL LABORATORY

January 30, 1991

TO: D. E. Moncton ALD/APS FROM: D. S. Gemmell Director, PHY SUBJECT: Safety Review of APEX

The Physics Division has conducted a Safety Review of APEX (ATLAS Positron Experiment).

After discussions with John Schiffer (Associate Division Director, PHY) and Russell Betts (APEX Project Manager) I am persuaded that APEX can be operated safely in an installation and testing mode when this is done in accordance with the enclosed documentation.

DSG:bf Encl. cc: F. Y. Fradin J. P. Schiffer J. R. Specht R. R. Betts B. B. Back J. Unik

Tiger Teams

3/92 Second Try With Ovanuru Beam Cangel wheel same as before (See page 1) 238 U28+ from score -238 U42+ ETOF = 3 Es: ~ 1300 Mex I~ 1.5 nA estimated from Stone energy 4 ent at exit of ATLAS. 7:00 U-Beam is approaching APEX! 238 U 28+ PII Every = 285.617eV (40.8 17eV 3456+) 238 (142+ Booster = 864.5 iteV (123.5 itev 3456+) 238 U42+ ATLAS 1307.6 MeV (186.8 MeV 34 56+) $LE = 150 \text{ a A} 239 U^{20+} \qquad f = 150 \text{ a A} 239 U^{42+} \qquad \text{Scaled from } 3^{4}\text{S energies}$ before Aper = 2 a A 239 U 42+ el. aug = 13.766 kG TOF = 1178.37 ± 5.71 MeV = 4.92 MeV/2 = 1156 Mev 1170.97 ± 4.01 = 4.86 Mev/m 1170.58 ± 4.83 E= 1156 MeV 1173.17 ± 4.82 +.3, 1992 7:17 First 238U beam on the ruby-quests in APEX those present: KOSSSU BEHR APC. Valle Walter Vintschena KRPC. Value KMAD truce Q.l. m. Barate

First Uranium Beam - Sept 3rd 1992

First Positron Spectrum

First Positron Spectrum

Summary of GSI Coincidence Results

System	$e^+ - e^-$ sum energy (keV)	Line width (keV)	Beam energy (MeV/nucleon)	Energy loss in target (MeV/nucleon)	Cross section (µb/sr) (iso) ^a (bb) ^b		Original reference
²³⁸ U+ ²³² Th	608±8	25±3	5.86-5.90	0.07	2.7±0.6	1.1±0.3	[20,21]
$^{238}U + ^{232}Th$	760±20	≤80	5.83	0.07	-	_	[18]
$^{238}\text{U} + ^{232}\text{Th}$	809±8	40±4	5.87-5.90	0.07	3.1±0.7	1.3 ± 0.3	[20,21]
²³⁸ U+ ¹⁸¹ Ta	625±8	20±3	6.24-6.38	0.10	3.2±0.8	1.3 ± 0.3	[20,21]
²³⁸ U+ ¹⁸¹ Ta	748±8	33±5	5.93-6.13	0.10	5.7±1.3	2.3 ± 0.5	[20,21]
²³⁸ U+ ¹⁸¹ Ta	805±8	27±3	6.24-6.38	0.10	3.3±0.8	1.4 ± 0.4	[20,21]
²³⁸ U+ ¹⁸¹ Ta	≈635	≈ 30	6.30	0.24	0.5 ± 0.1	-	[22]

TABLE I. Summary of experimental characteristics of previously reported $e^+ - e^-$ coincidence lines.

^aCross section $d\sigma_{\text{line}}/d\Omega_{HI}$ calculated assuming isotropic angular correlation between positron and electron as presented in [23], except for ²³⁸U+¹⁸¹Ta 635 keV.

^bCross section $d\sigma_{\text{line}}/d\Omega_{HI}$ calculated assuming back-to-back positron-electron angular correlation as presented in [23].

APEX Data Taking

TABLE II. APEX integrated luminosities and pair efficiencies for different data sets discussed in the text.

System	Beam energy range ^b (MeV/nucleon)	Average target thickness $(\mu \text{g/cm}^2)$	Integrated luminosity (μb^{-1})	Ne+	Ne+-e-	Pair ϵ (%) particle	Efficiency ^a ϵ (%) isotropic
²³⁸ U+ ²³² Th	5.78-5.95	760	7000	246 000	126 000	1.30	0.90
²³⁸ U+ ¹⁸¹ Ta	5.79-5.95	660	5800	59 000	17 000	0.88	0.61
²³⁸ U+ ¹⁸¹ Ta ²³⁸ U+ ¹⁸¹ Ta	5.94–6.10 6.13–6.30	650 700	11 000 8600	84 000 70 000	25 000 16 000	0.84 0.55	0.55 0.37

^aEfficiency calculated for a pair line with sum energy of 778 keV. ^bBeam energy range includes energy loss in the target.

Blowing Out Shroud! Power Failures!

APEX Data

APEX Singles and Coincidence Data

FIG. 4. (a) Energy distribution of positrons produced in the $^{238}\text{U}+^{232}\text{Th}$ reaction. No positron-heavy-ion coincidence is required. (b) Same as (a) except that two heavy ions are required to be detected in time coincidence with the positron.

APEX Data – No Peaks

Upper Limits on Line Cross Section

Fig. 42. Sum-energy spectra for 238 U + 232 Th at 5.95 MeV/u analyzed according to the expectations for the isotropic decay of a particle produced at rest in the center of mass. The "particle analysis" was for events with positrons and electrons with an opening angle of approximately 180°. From Ahmad et al. (1995b)

Published Limits

An Acid Test

FIG. 1. Spectra from the ²⁰⁶Pb+²⁰⁶Pb reaction at 5.90 MeV/ nucleon showing the Doppler reconstructed γ -ray spectrum. Transitions associated with the ²⁰⁶Pb(²⁰⁶Pb,²⁰⁵Pb)²⁰⁷Pb reaction are marked (\bullet) and occur at a level of 1% of the ²⁰⁶Pb(2⁺ \rightarrow 0⁺) Coulomb excitation. All other peaks arise from the decay of states in ²⁰⁶Pb.

FIG. 2. Sum-energy spectra from $^{206}Pb + ^{206}Pb$ at 5.90 MeV/ nucleon. (a) The raw data, (b) after Doppler correction for emission from each of the scattered ions, (c) with a further selection on small positron-electron opening angles, and (d) a Monte Carlo simulation of (b).

IPC in ²⁰⁶**Pb**+²⁰⁶**Pb**

OXPOS

- GSI and US Experimental Groups Meet at Wadham College, Oxford in 1996
- Cordial and Detailed Discussions (+ Good Food and Wine)
- Concluding Statement

"... the statistical significance of the original observations was over estimated"

APEX Publications

Anomalous Positrons from Heavy Ion Collisions Past Results and Future Plans Nucl. Instr. and Meth. <u>B43</u>, 29 (1989)

Nuclear Spectroscopy with Si PIN Diode Detectors at Room Temperature Nucl. Instr. Meth. <u>A299</u>, 201 (1990)

Positron-Electron Pairs in Heavy Ion Reactions: Status of the APEX Collaboration Proceedings of Seventh Winter Workshop on Nuclear Dynamics, Key West, Florida

A Fast Low Noise Silicon Detector for Electron Spectroscopy up to 1 MeV Nucl. Instr. and Meth.

APEX Heavy Ion Counters Nucl. Instrum. Methods <u>A348</u>, 252-255 (1994)

A Large Solid-Angle Array for Heavy Ions from APEX Nucl. Instrum. Methods <u>A350</u>, 491-502 (1994)

The ATLAS Positron Experiment - APEX Proceedings of the 10th Winter Workshop on Nuclear Dynamics, Snowbird, UT

Recent Results from APEX Proceedings of the Conference on Physics from Large g-Ray Detector Arrays Berkeley, CA,

Positron Production in Heavy Ion Collisions: Current Status of the Problem-II 5th International Conference on Nucleus-Nucleus Collisions, Taormina, Italy

Electronics for the Si Detectors in APEX Electronics for Future Colliders, Montvale, NJ, May 10-11, 1994

Search for Narrow Sum-Energy Lines in Electron-Positron Pair Emission from Heavylon Collisions near the Coulomb Barrier Phys.Rev.Letters <u>75</u>,2658-2661 (1995) A New Look at Positron Production from Heavy Ion Collisions: Results from APEX IV International Symposium on Weak and Electromagnetic Interactions in Nuclei, Osaka, Japan

A Solenoidal Spectrometer for Positron-Electron Pairs Produced in Heavy-Ion Collisions Nucl.Instruments and Methods, <u>A370</u>,539-557 (1996)

The Positron Peak Puzzle - Recent Results from APEX XXIV Mazurian Lakes School of Physics, Piaski, Poland 1995

Recent Results from APEX Proceedings of 12th Winter Workshop on Nuclear Dynamics, Snowbird UT 1996

Reply to Comment on APEX Phys.Rev.Letters <u>77</u>,2839 (1996)

Search for Monoenergetic Positron Emission from Heavy-Ion Collisions at Coulomb Barrier Energies Phys.Rev.Letters <u>78</u>,618-621 (1997)

The Positron Peak Problem: Results from APEX International Conference on Nuclear Structure at the Turn of the Century,Crete, Greece

Internal Pair Conversion in Heavy Nuclei Phys.Rev. <u>C55</u>,R2755 (1997)

Positron Electron Angular Correlations in Internal Pair Conversion Phys.Rev. <u>C57</u>,R2794 (1998)

Positron Electron Pairs Produced in Heavy Ion Collisions Phys.Rev. <u>C60</u>, 064601(1999)

APEX Publications

THE END !! ??

PHYSICAL REVIEW C, VOLUME 60, 064601

Positron-electron pairs produced in heavy-ion collisions

I. Ahmad,¹ Sam. M. Austin,² B. B. Back,¹ R. R. Betts,^{1,3} F. P. Calaprice,⁴ K. C. Chan, ⁵ A. Chishti,⁶ C. M. Conner,³
R. W. Dunford,¹ J. D. Fox,^{6,*} S. J. Freedman,^{1,7} M. Freer,^{1,8} S. B. Gazes,^{9,10} A. L. Hallin, ^{11,17} D. Henderson,¹ N. I. Kaloskamis,^{5,†} E. Kashy,² W. Kutschera,¹ J. Last,¹ C. J. Lister,¹ M. Liu,¹¹, M. R. Maier,⁶ D. M. Mercer,²
D. Mikolas,² P. A. A. Perera,⁹ M. D. Rhein,^{1,12} D. E. Roa,^{6,‡} J. P. Schiffer,^{1,10} T. A. Trainor,¹³ P. Wilt,¹ J. S. Winfield,^{2,§} M. Wolanski,^{1,10,II} F. L. H. Wolfs,⁹ A. H. Wuosmaa,¹ A. R. Young,⁴ and J. E. Yurkon²
¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
²NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
³Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607
⁴Physics Department, Princeton University, Princeton, New Jersey 08544
⁵A. W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06511
⁶Physics and Space Research, University of Birmingham, P. O. Box 363, Birmingham B15 2TT, England
⁹Nuclear Science Research Laboratory, University of Rochester, Rochester, New York 14627
¹⁰Department of Physics, University, of Rochester, Rochester, New York 14627
¹⁰Department of Physics, University, Kingston, Ontario, Canada K7L 3N6
¹²Gesellschaft für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
¹³Nuclear Physics Laboratory, University of Washington, Seattle, Washington 98195 (Received 25 November 1998; published 26 October 1999)

The production of positron-electron pairs in collisions of $^{238}U + ^{232}Th$ at 5.95 MeV/nucleon, and of $^{238}U + ^{181}Ta$ at 5.95, 6.1, and 6.3 MeV/nucleon, has been studied with the APEX spectrometer at Argonne National Laboratory. Several analyses have been performed to search for sharp structures in sum-energy spectra for positron-electron pairs. Such features have been reported in previous experiments. No statistically convincing evidence for such behavior is observed in the present data. [S0556-2813(99)06311-6]

PACS number(s): 25.70.Bc, 14.80.-j

The End (1999)

Afterword

- APEX and the ATLAS Uranium Upgrade were amazing technical and political *tours de force*
- The product of what we do is often the process itself
- To push back the frontiers we have to take chances sometimes we make mistakes
- We have to keep asking the hard questions

Afterword